scholarly journals Galvanic Vestibular Stimulation Induces a Spatial Bias in Whole-body Position Estimates

2015 ◽  
Vol 8 (5) ◽  
pp. 981-983
Author(s):  
Mitesh Patel ◽  
R. Edward Roberts ◽  
Qadeer Arshad ◽  
Maroof Ahmed ◽  
Mohammed U. Riyaz ◽  
...  
2018 ◽  
Vol 72 (6) ◽  
pp. 1550-1560 ◽  
Author(s):  
Tanya Karn ◽  
Michael E Cinelli

The purpose of this study was to determine the effects of galvanic vestibular stimulation (GVS) on path trajectory and body rotation during a triangle completion task. Participants ( N = 17, female, 18-30 years) completed the triangle completion task in virtual reality using two different size triangles. GVS was delivered at three times each participant’s threshold in either the left or right direction prior to the final leg of the triangle and continued until the participant reached their final position. Whole body kinematics were collected using an NDI Optotrak motion tracking system. Results revealed a significant main effect of GVS on arrival error such that no GVS (NGVS) had significantly smaller arrival errors than when GVS was administered. There was also a significant main effect of GVS on angular error such that NGVS had significantly smaller error than GVSaway and GVStowards. There was no significant difference between GVS trials in path variability during the final leg on route to the final position. These results demonstrate that vestibular perturbation reduced the accuracy of the triangle completion task, affecting path trajectory and body position during a path integration task in the absence of visual cues.


1985 ◽  
Vol 54 (1) ◽  
pp. 123-133 ◽  
Author(s):  
I. Suzuki ◽  
S. J. Timerick ◽  
V. J. Wilson

In decerebrate cats, we have studied the response of neurons in the L3-L6 segments of the spinal cord to stimulation of neck and vestibular receptors. Neck receptors were stimulated by head rotation in labyrinthectomized cats or by body rotation with the head fixed in labyrinth-intact cats. Vestibular receptors were stimulated by whole-body tilt in the latter preparation. Most neurons were located outside the motoneuron nuclei and were arbitrarily classified as interneurons. Combinations of roll and pitch stimuli at frequencies of 0.1 or 0.05 Hz were used to determine the horizontal component of the polarization vector, i.e., the best direction of tilt, for each neuron. Two types of stimuli were used; rotation of a fixed angle of tilt around the head or body ("wobble," Ref. 22) or sinusoidal stimuli in several planes. Polarization vectors of the responses to neck stimulation were widely distributed; different neurons responded best to roll, pitch, and angles in between. For every neuron, the amplitude of the response decreased as the cosine of the angle between the direction of maximal sensitivity and the plane of the stimulus. The direction of the vector remained stable as the frequency of stimulation was varied. Neurons with different vectors had similar dynamics that resembled those of cervical interneurons (27). Many neurons responded to both neck and vestibular stimulation, although the vestibular response usually had a much lower gain. Neck and vestibular vectors were approximately opposite in direction. We suggest that neck responses originate in receptors, probably spindles, in perivertebral muscles. Each of these muscles presumably is best stretched by a particular direction of pull. It seems likely that convergence from receptors in selected muscles determines the direction of a spinal neuron's vector. Vestibular responses probably are due mainly to activity in otolith afferents.


2021 ◽  
Vol 15 ◽  
Author(s):  
Akiyoshi Matsugi ◽  
Koji Nagino ◽  
Tomoyuki Shiozaki ◽  
Yohei Okada ◽  
Nobuhiko Mori ◽  
...  

ObjectiveNoisy galvanic vestibular stimulation (nGVS) is often used to improve postural stability in disorders, such as neurorehabilitation montage. For the safe use of nGVS, we investigated whether arterial pressure (AP) and heart rate vary during static supine and slow whole-body tilt with random nGVS (0.4 mA, 0.1–640 Hz, gaussian distribution) in a healthy elderly population.MethodsThis study was conducted with a double-blind, sham-controlled, cross-over design. Seventeen healthy older adults were recruited. They were asked to maintain a static supine position on a bed for 10 min, and the bed was tilted up (TU) to 70 degrees within 30 s. After maintaining this position for 3 min, the bed was passively tilted down (TD) within 30 s. Real-nGVS or sham-nGVS was applied from 4 to 15 min. The time course of mean arterial pressure (MAP) and RR interval variability (RRIV) were analyzed to estimate the autonomic nervous activity.ResultnGVS and/or time, including pre-/post-event (nGVS-start, TU, and TD), had no impact on MAP and RRIV-related parameters. Further, there was no evidence supporting the argument that nGVS induces pain, vertigo/dizziness, and uncomfortable feeling.ConclusionnGVS may not affect the AP and RRIV during static position and whole-body tilting or cause pain, vertigo/dizziness, and discomfort in the elderly.


2001 ◽  
Vol 86 (2) ◽  
pp. 575-585 ◽  
Author(s):  
F. B. Horak ◽  
F. Hlavacka

To determine whether subjects with somatosensory loss show a compensatory increase in sensitivity to vestibular stimulation, we compared the amplitude of postural lean in response to four different intensities of bipolar galvanic stimulation in subjects with diabetic peripheral neuropathy (PNP) and age-matched control subjects. To determine whether healthy and neuropathic subjects show similar increases in sensitivity to galvanic vestibular stimulation when standing on unstable surfaces, both groups were exposed to galvanic stimulation while standing on a compliant foam surface. In these experiments, a 3-s pulse of galvanic current was administered to subjects standing with eyes closed and their heads turned toward one shoulder (anodal current on the forward mastoid). Anterior body tilt, as measured by center of foot pressure (CoP), increased proportionately with increasing galvanic vestibular stimulation intensity for all subjects. Subjects with peripheral neuropathy showed larger forward CoP displacement in response to galvanic stimulation than control subjects. The largest differences between neuropathy and control subjects were at the highest galvanic intensities, indicating an increased sensitivity to vestibular stimulation. Neuropathy subjects showed a larger increase in sensitivity to vestibular stimulation when standing on compliant foam than control subjects. The effect of galvanic stimulation was larger on the movement of the trunk segment in space than on the body's center of mass (CoM) angle, suggesting that the vestibular system acts to control trunk orientation rather than to control whole body posture. This study provides evidence for an increase in the sensitivity of the postural control system to vestibular stimulation when somatosensory information from the surface is disrupted either by peripheral neuropathy or by standing on an unstable surface. Simulations from a simple model of postural orientation incorporating feedback from the vestibular and somatosensory systems suggest that the increase in body lean in response to galvanic current in subjects with neuropathy could be reproduced only if central vestibular gain was increased when peripheral somatosensory gain was decreased. The larger effects of galvanic vestibular stimulation on the trunk than on the body's CoM suggest that the vestibular system may act to control postural orientation via control of the trunk in space.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Po-Yin Chen ◽  
Ying-Chun Jheng ◽  
Chien-Chih Wang ◽  
Shih-En Huang ◽  
Ting-Hua Yang ◽  
...  

AbstractA single-blind study to investigate the effects of noisy galvanic vestibular stimulation (nGVS) in straight walking and 2 Hz head yaw walking for healthy and bilateral vestibular hypofunction (BVH) participants in light and dark conditions. The optimal stimulation intensity for each participant was determined by calculating standing stability on a force plate while randomly applying six graded nGVS intensities (0–1000 µA). The chest–pelvic (C/P) ratio and lateral deviation of the center of mass (COM) were measured by motion capture during straight and 2 Hz head yaw walking in light and dark conditions. Participants were blinded to nGVS served randomly and imperceivably. Ten BVH patients and 16 healthy participants completed all trials. In the light condition, the COM lateral deviation significantly decreased only in straight walking (p = 0.037) with nGVS for the BVH. In the dark condition, both healthy (p = 0.026) and BVH (p = 0.017) exhibited decreased lateral deviation during nGVS. The C/P ratio decreased significantly in BVH for 2 Hz head yaw walking with nGVS (p = 0.005) in light conditions. This study demonstrated that nGVS effectively reduced walking deviations, especially in visual deprived condition for the BVH. Applying nGVS with different head rotation frequencies and light exposure levels may accelerate the rehabilitation process for patients with BVH.Clinical Trial Registration This clinical trial was prospectively registered at www.clinicaltrials.gov with the Unique identifier: NCT03554941. Date of registration: (13/06/2018).


2000 ◽  
Vol 84 (2) ◽  
pp. 1107-1111 ◽  
Author(s):  
Jörg Lewald ◽  
Hans-Otto Karnath

We investigated the effect of vestibular stimulation on the lateralization of dichotic sound by cold-water irrigation of the external auditory canal in human subjects. Subjects adjusted the interaural level difference of the auditory stimulus to the subjective median plane of the head. In those subjects in whom dizziness and nystagmus indicated sufficient vestibular stimulation, these adjustments were significantly shifted toward the cooled ear compared with the control condition (irrigation with water at body temperature); i.e., vestibular stimulation induced a shift of the sound image toward the nonstimulated side. The mean magnitude of the shift was 7.3 dB immediately after vestibular stimulation and decreased to 2.5 dB after 5 min. As shown by an additional control experiment, this effect cannot be attributed to a unilateral hearing loss induced by cooling of the auditory periphery. The results indicate the involvement of vestibular afferent information in the perception of sound location during movements of the head and/or the whole body. We thus hypothesize that vestibular information is used by central-nervous mechanisms generating a world-centered representation of auditory space.


Sign in / Sign up

Export Citation Format

Share Document