Spatial fusion of maximum signal fraction analysis for frequency recognition in SSVEP-based BCI

2020 ◽  
Vol 61 ◽  
pp. 102042 ◽  
Author(s):  
Zhenhua Li ◽  
Ke Liu ◽  
Xin Deng ◽  
Guoyin Wang
2020 ◽  
Vol 2020 (7) ◽  
pp. 143-1-143-6 ◽  
Author(s):  
Yasuyuki Fujihara ◽  
Maasa Murata ◽  
Shota Nakayama ◽  
Rihito Kuroda ◽  
Shigetoshi Sugawa

This paper presents a prototype linear response single exposure CMOS image sensor with two-stage lateral overflow integration trench capacitors (LOFITreCs) exhibiting over 120dB dynamic range with 11.4Me- full well capacity (FWC) and maximum signal-to-noise ratio (SNR) of 70dB. The measured SNR at all switching points were over 35dB thanks to the proposed two-stage LOFITreCs.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7861
Author(s):  
Abrar Siddique ◽  
Tahesin Samira Delwar ◽  
Jee-Youl Ryu

Vehicular visible light communication is known as a promising way of inter-vehicle communication. Vehicular VLC can ensure the significant advancement of safety and efficiency in traffic. It has disadvantages, such as unexpected glare on drivers in moving conditions, i.e., non-line-of-sight link at night. While designing a receiver, the most important factor is to ensure the optimal quality of the received signal. Within this context, to achieve an optimal communication quality, it is necessary to find the optimal maximum signal strength. Hereafter, a new receiver design is focused on in this paper at the circuit level, and a novel micro genetic algorithm is proposed to optimize the signal strength. The receiver can calculate the SNR, and it is possible to modify its structural design. The micro GA determines the alignment of the maximum signal strength at the receiver point rather than monitoring the signal strength for each angle. The results showed that the proposed scheme accurately estimates the alignment of the receiver, which gives the optimum signal strength. In comparison with the conventional GA, the micro GA results showed that the maximum received signal strength was improved by −1.7 dBm, −2.6 dBm for user Location 1 and user Location 2, respectively, which proves that the micro GA is more efficient. The execution time of the conventional GA was 7.1 s, while the micro GA showed 0.7 s. Furthermore, at a low SNR, the receiver showed robust communication for automotive applications.


1993 ◽  
pp. 155-171 ◽  
Author(s):  
M. Peri ◽  
C. Regazzoni ◽  
A. Tesei ◽  
G. Vernazza

Sign in / Sign up

Export Citation Format

Share Document