scholarly journals A Novel Optimized V-VLC Receiver Sensor Design Using μGA in Automotive Applications

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7861
Author(s):  
Abrar Siddique ◽  
Tahesin Samira Delwar ◽  
Jee-Youl Ryu

Vehicular visible light communication is known as a promising way of inter-vehicle communication. Vehicular VLC can ensure the significant advancement of safety and efficiency in traffic. It has disadvantages, such as unexpected glare on drivers in moving conditions, i.e., non-line-of-sight link at night. While designing a receiver, the most important factor is to ensure the optimal quality of the received signal. Within this context, to achieve an optimal communication quality, it is necessary to find the optimal maximum signal strength. Hereafter, a new receiver design is focused on in this paper at the circuit level, and a novel micro genetic algorithm is proposed to optimize the signal strength. The receiver can calculate the SNR, and it is possible to modify its structural design. The micro GA determines the alignment of the maximum signal strength at the receiver point rather than monitoring the signal strength for each angle. The results showed that the proposed scheme accurately estimates the alignment of the receiver, which gives the optimum signal strength. In comparison with the conventional GA, the micro GA results showed that the maximum received signal strength was improved by −1.7 dBm, −2.6 dBm for user Location 1 and user Location 2, respectively, which proves that the micro GA is more efficient. The execution time of the conventional GA was 7.1 s, while the micro GA showed 0.7 s. Furthermore, at a low SNR, the receiver showed robust communication for automotive applications.

2021 ◽  
Vol 13 (4) ◽  
pp. 788
Author(s):  
Qinghua Zhang ◽  
Yongxing Zhu ◽  
Zhengsheng Chen

An in-depth and comprehensive assessment of new observations from BDS-3 satellites is presented, with the main focus on the Carrier-to-Noise density ratio (C/N0), the quality of code and carrier phase observations for B1C and B2a signal. The signal characteristics of geosynchronous earth orbit (GEO), inclined geosynchronous satellite orbit (IGSO) and medium earth orbit (MEO) satellites of BDS-3 were grouped and compared, respectively. The evaluation results of the new B1C and B2a signals of BDS-3 were compared with the previously B1I/B2I/B3I signals and the interoperable signals of GPS, Galileo and quasi-zenith satellite system (QZSS) were compared simultaneously. As expected, the results clearly show that B1C and B2a have better signal strength and higher accuracy, including code and carrier phase observations. The C/N0 of the B2a signal is about 3 dB higher than other signals. One exception is the code observation accuracy of B3I, which value is less than 0.15 m. The carrier precision of B1C and B2a is better than that of B1I/B2I/B3I. Despite difference-in-difference (DD) observation quantity or zero-base line evaluation is adopted, while B1C is about 0.3 mm higher carrier precision than B2a. The BDS-3 MEO satellite and GPS, Galileo, and QZSS satellites have the same level of signal strength, code and phase observation accuracy at the interoperable frequency, namely 1575.42 MHz and 1176.45 MHz which are very suitable for the co-position application.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Peter Brida ◽  
Juraj Machaj

Medical implants based on wireless communication will play crucial role in healthcare systems. Some applications need to know the exact position of each implant. RF positioning seems to be an effective approach for implant localization. The two most common positioning data typically used for RF positioning are received signal strength and time of flight of a radio signal between transmitter and receivers (medical implant and network of reference devices with known position). This leads to positioning methods: received signal strength (RSS) and time of arrival (ToA). Both methods are based on trilateration. Used positioning data are very important, but the positioning algorithm which estimates the implant position is important as well. In this paper, the proposal of novel algorithm for trilateration is presented. The proposed algorithm improves the quality of basic trilateration algorithms with the same quality of measured positioning data. It is called Enhanced Positioning Trilateration Algorithm (EPTA). The proposed algorithm can be divided into two phases. The first phase is focused on the selection of the most suitable sensors for position estimation. The goal of the second one lies in the positioning accuracy improving by adaptive algorithm. Finally, we provide performance analysis of the proposed algorithm by computer simulations.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3203 ◽  
Author(s):  
Syed Khandker ◽  
Joaquín Torres-Sospedra ◽  
Tapani Ristaniemi

In recent times, Received Signal Strength (RSS)-based Wi-Fi fingerprinting localization has become one of the most promising techniques for indoor localization. The primary aim of RSS is to check the quality of the signal to determine the coverage and the quality of service. Therefore, fine-resolution RSS is needed, which is generally expressed by 1-dBm granularity. However, we found that, for fingerprinting localization, fine-granular RSS is unnecessary. A coarse-granular RSS can yield the same positioning accuracy. In this paper, we propose quantization for only the effective portion of the signal strength for fingerprinting localization. We found that, if a quantized RSS fingerprint can carry the major characteristics of a radio environment, it is sufficient for localization. Five publicly open fingerprinting databases with four different quantization strategies were used to evaluate the study. The proposed method can help to simplify the hardware configuration, enhance security, and save approximately 40–60% storage space and data traffic.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1182
Author(s):  
Jiansheng Qian ◽  
Mingzhi Song

Fingerprint positioning based on WiFi in coal mines has received much attention because of the widespread application of WiFi. Fingerprinting techniques have developed rapidly due to the efforts of many researchers. However, the off-line construction of the radio fingerprint database is a tedious and time-consuming process. When the underground environments change, it may be necessary to update the signal received signal strength indication (RSSI) of all reference points, which will affect the normal working of a personnel positioning system. To solve this problem, an adaptive construction and update method based on a quantum-behaved particle swarm optimization–user-location trajectory feedback (QPSO–ULTF) for a radio fingerprint database is proposed. The principle of ULTF is that the mobile terminal records and uploads the related dataset in the process of user’s walking, and it forms the user-location track with RSSI through the analysis and processing of the positioning system server. QPSO algorithm is used for the optimal radio fingerprint match between the RSSI of the access point (AP) contained in the dataset of user-location track and the calibration samples to achieve the adaptive generation and update of the radio fingerprint samples. The experimental results show that the radio fingerprint database generated by the QPSO–ULTF is similar to the traditional radio fingerprint database in the statistical distribution characteristics of the signal received signal strength (RSS) at each reference point. Therefore, the adaptive radio fingerprint database can replace the traditional radio fingerprint database. The comparable results of well-known traditional positioning methods demonstrate that the radio fingerprint database generated or updated by the QPSO–ULTF has a good positioning effect, which can ensure the normal operation of a personnel positioning system.


2014 ◽  
Vol 52 (7) ◽  
pp. 88-97 ◽  
Author(s):  
Takaya Yamazato ◽  
Isamu Takai ◽  
Hiraku Okada ◽  
Toshiaki Fujii ◽  
Tomohiro Yendo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document