Super-resolution method for MR images based on multi-resolution CNN

2022 ◽  
Vol 72 ◽  
pp. 103372
Author(s):  
Li Kang ◽  
Guojuan Liu ◽  
Jianjun Huang ◽  
Jianping Li
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Huanyu Liu ◽  
Jiaqi Liu ◽  
Junbao Li ◽  
Jeng-Shyang Pan ◽  
Xiaqiong Yu

Magnetic resonance imaging (MRI) is widely used in the detection and diagnosis of diseases. High-resolution MR images will help doctors to locate lesions and diagnose diseases. However, the acquisition of high-resolution MR images requires high magnetic field intensity and long scanning time, which will bring discomfort to patients and easily introduce motion artifacts, resulting in image quality degradation. Therefore, the resolution of hardware imaging has reached its limit. Based on this situation, a unified framework based on deep learning super resolution is proposed to transfer state-of-the-art deep learning methods of natural images to MRI super resolution. Compared with the traditional image super-resolution method, the deep learning super-resolution method has stronger feature extraction and characterization ability, can learn prior knowledge from a large number of sample data, and has a more stable and excellent image reconstruction effect. We propose a unified framework of deep learning -based MRI super resolution, which has five current deep learning methods with the best super-resolution effect. In addition, a high-low resolution MR image dataset with the scales of ×2, ×3, and ×4 was constructed, covering 4 parts of the skull, knee, breast, and head and neck. Experimental results show that the proposed unified framework of deep learning super resolution has a better reconstruction effect on the data than traditional methods and provides a standard dataset and experimental benchmark for the application of deep learning super resolution in MR images.


2009 ◽  
Author(s):  
Ryoichi Hirano ◽  
Masatoshi Hirono ◽  
Riki Ogawa ◽  
Nobutaka Kikuiri ◽  
Kenichi Takahara ◽  
...  

2020 ◽  
Vol 7 (3) ◽  
pp. 432
Author(s):  
Windi Astuti

Various types of image processing that can be done by computers, such as improving image quality is one of the fields that is quite popular until now. Improving the quality of an image is necessary so that someone can observe the image clearly and in detail without any disturbance. An image can experience major disturbances or errors in an image such as the image of the screenshot is used as a sample. The results of the image from the screenshot have the smallest sharpness and smoothness of the image, so to get a better image is usually done enlargement of the image. After the screenshot results are obtained then, the next process is cropping the image and the image looks like there are disturbances such as visible blur and cracked. To get an enlarged image (Zooming image) by adding new pixels or points. This is done by the super resolution method, super resolution has three stages of completion, first Registration, Interpolation, and Reconstruction. For magnification done by linear interpolation and reconstruction using a median filter for image refinement. This method is expected to be able to solve the problem of improving image quality in image enlargement applications. This study discusses that the process carried out to implement image enlargement based on the super resolution method is then built by using R2013a matlab as an editor to edit programs


2021 ◽  
Vol 13 (20) ◽  
pp. 4115
Author(s):  
Ke Tan ◽  
Xingyu Lu ◽  
Jianchao Yang ◽  
Weimin Su ◽  
Hong Gu

Super-resolution technology is considered as an efficient approach to promote the image quality of forward-looking imaging radar. However, super-resolution technology is inherently an ill-conditioned issue, whose solution is quite susceptible to noise. Bayesian method can efficiently alleviate this issue through utilizing prior knowledge of the imaging process, in which the scene prior information plays a pretty significant role in ensuring the imaging accuracy. In this paper, we proposed a novel Bayesian super-resolution method on the basis of Markov random field (MRF) model. Compared with the traditional super-resolution method which is focused on one-dimensional (1-D) echo processing, the MRF model adopted in this study strives to exploit the two-dimensional (2-D) prior information of the scene. By using the MRF model, the 2-D spatial structural characteristics of the imaging scene can be well described and utilized by the nth-order neighborhood system. Then, the imaging objective function can be constructed through the maximum a posterior (MAP) framework. Finally, an accelerated iterative threshold/shrinkage method is utilized to cope with the objective function. Validation experiments using both synthetic echo and measured data are designed, and results demonstrate that the new MAP-MRF method exceeds other benchmarking approaches in terms of artifacts suppression and contour recovery.


Sign in / Sign up

Export Citation Format

Share Document