PIV measurements and analysis of transitional flow in a reduced-scale model: Ventilation by a free plane jet with Coanda effect

2012 ◽  
Vol 56 ◽  
pp. 301-313 ◽  
Author(s):  
T. van Hooff ◽  
B. Blocken ◽  
T. Defraeye ◽  
J. Carmeliet ◽  
G.J.F. van Heijst
2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Aldona Skotnicka-Siepsiak

For scientist, the Coanda effect has been an object of interest for a long time. All the time, some new applications of it are found although it has been more than a hundred years since Henri Coanda got a patent that was critical for that issue. Apart from aviation, it is more and more often used in ventilation systems to control the manner of air division and the design nozzles and ventilators. It is surprising, however, that a good command of that phenomenon and a need to apply it in different solutions did not entail a significant increase of the interest in the Coanda effect hysteresis, although it was mentioned for the first time by Newman in 1961. This article presents results of experimental measurements for a two-dimensional incompressible plane jet by an inclined plate. The hysteresis has been observed as a different jet behavior (a free jet or a jet attached to a flat plate) depending on the direction in which the plate deflection angle changes. The observed hysteresis area, defined by critical values for the αca attachment and αcd detachment angles, spanned from 8 deg to 14 deg. Its dependency on the Reynolds number has also been examined for Re ranging from 3500 to 26,500. Considering the Coanda effect hysteresis, a pressure distribution on the plate and the xR reattachment distance has been examined. The distribution of forces on a plate has been identified, which has facilitated a graphical mirroring of the Coanda effect hysteresis loop.


Author(s):  
J. L. Cozijn ◽  
R. Hallmann

The wake flow behind a ducted azimuthing thruster was investigated. The thruster wake is an important factor in thruster interaction effects. Model tests were carried out for 3 different configurations; a thruster in open water conditions, a thruster under a flat plate and a thruster built into a barge. Two different thrusters were considered, a ‘normal’ thruster with a horizontal propeller axis and a ‘tilted’ thruster with a propeller axis and nozzle oriented 7 deg down-wards. In the tests the propeller thrust and torque were recorded, as well as the nozzle thrust and unit thrust. The velocities in the wake of the thruster were measured using a PIV (particle image velocimetry) system, for down-stream locations up to x/D = 19. The influence of the thruster tilt, the plate above the thruster and bilge radius on the thruster wake flow were investigated. Detailed PIV measurements were carried out on the wake flow behind the thruster in open water conditions. The PIV system used can measure 3D velocities in large set of points in a 2D plane, which is illuminated by a laser light beam. The flow velocities were measured in a large number of cross sections at different distances from the thruster. The PIV measurements provide a detailed image of the flow velocities in the thruster wake, showing the axial velocities, as well as the rotation and divergence of the wake. Subsequently, PIV measurements were carried out for the thruster under a flat plate and the thruster under a barge. The measurement results show a thruster wake that is deformed by the presence of the plate and the barge. The plate and the bottom of the barge form a flat plane above the thruster, clearly flattening the cross section of the thruster wake. Furthermore, the wake flow at the side of the barge, near the bilge radius, results in a low pressure region, causing the wake flow to diverge up as it flows from under the barge into the open water. This phenomenon is known as the Coanda effect and is strongly dependent on the bilge radius and the distance between the thruster and the side of the barge. The effect of both these parameters was confirmed in the model test results presented. The typical flow patterns observed as a result of the Coanda effect are illustrated in Figure 1 below. The results of the present model test research are used to further improve the understanding of the physics of thruster interaction effects. Furthermore, the results will serve as validation material for CFD calculations.


Author(s):  
Felipe Santos de Castro ◽  
Eduardo Tadashi Katsuno ◽  
Andre Mitsuo Kogishi ◽  
José Marcos Paz de Souza ◽  
Joao Lucas Dozzi Dantas Dantas

Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


AIChE Journal ◽  
1972 ◽  
Vol 18 (1) ◽  
pp. 51-57 ◽  
Author(s):  
T. Panitz ◽  
D. T. Wasan

2012 ◽  
Vol 25 ◽  
pp. 01015 ◽  
Author(s):  
Jan Fišer ◽  
Jan Jedelský ◽  
Tomáš Vach ◽  
Matěj Forman ◽  
Miroslav Jícha

Sign in / Sign up

Export Citation Format

Share Document