Thermodynamic analysis of the Fe–Ti–P ternary system by incorporating first-principles calculations into the CALPHAD approach

Calphad ◽  
2006 ◽  
Vol 30 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Hiroshi Ohtani ◽  
Naoko Hanaya ◽  
Mitsuhiro Hasebe ◽  
Shin-ichi Teraoka ◽  
Masayuki Abe
2007 ◽  
Vol 539-543 ◽  
pp. 2413-2418 ◽  
Author(s):  
Hiroshi Ohtani ◽  
N. Hanaya ◽  
Mitsuhiro Hasebe

A thermodynamic analysis of the Fe−M−P (M = Nb, Ti) ternary system has been performed by combining first-principles calculations with the CALPHAD approach. Because of the lack of experimental information available, thermodynamic properties of orthorhombic anti-PbCl2-type FeMP were evaluated using the Full Potential Linearized Augmented Plane Wave method, and the estimated values were introduced into a CALPHAD-type thermodynamic analysis. Applying this procedure, the phase diagrams of the Fe−M−P ternary phase diagrams whose contents are uncertain so far were calculated with a high degree of probability. Phase diagrams for high-purity ferritic stainless steels obtained following the same procedure are also presented.


2007 ◽  
Vol 561-565 ◽  
pp. 1899-1902 ◽  
Author(s):  
T. Tokunaga ◽  
N. Hanaya ◽  
Hiroshi Ohtani ◽  
Mitsuhiro Hasebe

A thermodynamic analysis of the Fe-Mn-P ternary system has been carried out using the CALPHAD method. Among the three binary systems relevant to this ternary phase diagram, the thermodynamic parameters of the Mn-P binary system were evaluated in this study. The enthalpy of formation of the binary phosphides obtained from our first-principles calculations was utilized in the present analysis to compensate for the lack of available experimental data. The thermodynamic descriptions of the Fe-Mn and Fe-P binary systems were taken from previous studies. The phase equilibria in the Fe-Mn-P ternary system were analysed based on the experimental data on the phase boundaries. The calculated phase diagrams are in agreement with the experimental results.


Author(s):  
Jie-Qiong Hu ◽  
Ming Xie ◽  
Yongtai Chen ◽  
Jiheng Fang ◽  
Qiao Zhang

Abstract Au-Pt-Sn alloys are a novel class of materials with promising catalytic properties. This study provides updated information on phase equilibrium structures and thermodynamics of the Au-Pt-Sn ternary system. The formation enthalpies of Au-Sn and Pt-Sn binary subsystems were predicted by first principles calculations and these values were further refined by CALPHAD method. The results obtained accurately reproduced the experimental data. The reassessed phase diagram of the Au-Pt-Sn ternary system accurately described the phase composition of several Au-Pt-Sn alloys, which is essential for further modifications of these materials.


2019 ◽  
Vol 123 (28) ◽  
pp. 17155-17162 ◽  
Author(s):  
Xin Wang ◽  
Rui-Zhi Qiu ◽  
Zhong Long ◽  
Lei Lu ◽  
Yin Hu ◽  
...  

Calphad ◽  
2012 ◽  
Vol 37 ◽  
pp. 72-76 ◽  
Author(s):  
Yaru Wang ◽  
Peisheng Wang ◽  
Dongdong Zhao ◽  
Biao Hu ◽  
Yong Du ◽  
...  

2007 ◽  
Vol 539-543 ◽  
pp. 2407-2412 ◽  
Author(s):  
T. Tokunaga ◽  
Hiroshi Ohtani ◽  
Mitsuhiro Hasebe

Thermodynamic assessment of the Al-Cr system has been carried out by incorporating first-principles calculations into the CALPHAD approach. A regular solution approximation was adopted to describe the Gibbs energy of the solution phases. The several phases appearing in the composition range between about 30 and 42 at.%Cr were treated as a single homogeneous γ-phase, based on recent experimental results, and the Gibbs energy of the γ-phase was represented using the four-sublattice model with the formula (Al,Cr)8(Al,Cr)8(Cr)12(Al)24. The calculated results enable the reproduction of experimental results on both the phase equilibria and thermochemical properties. In addition, a B2 ordered bcc phase, which was suggested to form as an equilibrium phase in a previous X-ray diffraction study, is not likely to form in either the stable state or metastable state based on our first-principles calculations.


2016 ◽  
Vol 52 (2) ◽  
pp. 177-183 ◽  
Author(s):  
G. Huang ◽  
L. Liu ◽  
L. Zhang ◽  
Z. Jin

Phase relationships of the ternary Al-Cu-Yb system have been assessed using a combination of CALPHAD method and first principles calculations. A self-consistent thermodynamic parameter was established based on the experimental and theoretical information. Most of the binary intermetallic phases, except Al3Yb, Al2Yb, Cu2Yb and Cu5Yb, were assumed to be zero solubility in the ternary system. Based on the experimental data, eight ternary intermetallic compounds were taken into consideration in this system. Among them, three were treated as line compounds with large homogeneity ranges for Al and Cu. The others were treated as stoichiometric compounds. The calculated phase diagrams were in agreement with available experimental and theoretical data.


Sign in / Sign up

Export Citation Format

Share Document