Solving Poisson equation with Dirichlet conditions through multinode Shepard operators

2021 ◽  
Vol 98 ◽  
pp. 254-260
Author(s):  
Francesco Dell'Accio ◽  
Filomena Di Tommaso ◽  
Otheman Nouisser ◽  
Najoua Siar
2018 ◽  
Author(s):  
Agah D. Garnadi

We studied simply supported polynomial data of boundary value problem of Polyharmonic equation. The problem is reformulated as a systems of Laplace-Poisson equation with Polynomial Dirichlet problems. We utilize an exact algorithms for solving Laplace equations with Dirichlet conditions with polynomial data. The algorithm requires differentiation of the boundary function, but no integration.


1997 ◽  
Vol 08 (04) ◽  
pp. 793-803 ◽  
Author(s):  
Yu Chen ◽  
Hirotada Ohashi

The lattice-Bhatnagar-Gross-Krook (BGK) method has been used to simulate fluid flow in the nearly incompressible limit. But for the completely incompressible flows, two special approaches should be applied to the general model, for the steady and unsteady cases, respectively. Introduced by Zou et al.,1 the method for steady incompressible flows will be described briefly in this paper. For the unsteady case, we will show, using a simple numerical example, the need to solve a Poisson equation for pressure.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 464
Author(s):  
Jichao Wang ◽  
Ting Yu

In this paper, we study the singularly perturbed problem for the Schrödinger–Poisson equation with critical growth. When the perturbed coefficient is small, we establish the relationship between the number of solutions and the profiles of the coefficients. Furthermore, without any restriction on the perturbed coefficient, we obtain a different concentration phenomenon. Besides, we obtain an existence result.


Author(s):  
GuoLong Zhang

The use of computer technology for three-dimensional (3 D) reconstruction is one of the important development directions of social production. The purpose is to find a new method that can be used in traditional handicraft design, and to explore the application of 3 D reconstruction technology in it. Based on the description and analysis of 3 D reconstruction technology, the 3 D reconstruction algorithm based on Poisson equation is analyzed, and the key steps and problems of the method are clarified. Then, by introducing the shielding design constraint, a 3 D reconstruction algorithm based on shielded Poisson equation is proposed. Finally, the performance of two algorithms is compared by reconstructing the 3 D image of rabbit. The results show that: when the depth value of the algorithm is 11, the surface of the rabbit image obtained by the proposed optimization algorithm is smoother, and the details are more delicate and fluent; under different depth values, with the increase of the depth value, the number of vertices and faces of the two algorithms increase, and the optimal depth values of 3 D reconstruction are more than 8. However, the proposed optimization algorithm has more vertices, and performs better in the reconstruction process; the larger the depth value is, the more time and memory are consumed in 3 D reconstruction, so it is necessary to select the appropriate depth value; the shielding parameters of the algorithm have a great impact on the fineness of the reconstruction model. The larger the parameter is, the higher the fineness is. In a word, the proposed 3 D reconstruction algorithm based on shielded Poisson equation has better practicability and superiority.


Sign in / Sign up

Export Citation Format

Share Document