19. A customized targeted next-generation sequencing (NGS) panel for solid tumours: Analysis of the first 100 specimens

2020 ◽  
Vol 244 ◽  
pp. 7-8
Author(s):  
Afia Hasnain ◽  
Shantanu Banerji ◽  
Ron Agatep ◽  
Tamara Dyck ◽  
Paul Park ◽  
...  
Author(s):  
Rishab Bharadwaj ◽  
Thulasi Raman ◽  
Ravikumar Thangadorai ◽  
Deenadayalan Munirathnam

Hereditary hemolytic anemias present a unique diagnostic challenge due to their wide phenotypic and genotypic spectrum. Accurate diagnosis is essential to ensure appropriate treatment. We report two cases, which presented as hemolytic anemias, but initial workup was inconclusive and they were finally diagnosed with the help of Next Generation Sequencing (Dehydrated Hereditary Stomatocytosis and Kӧln Hemoglobinopathy). The introduction of gene sequencing to aid diagnosis of these disorders is a revolutionary step forward and should be incorporated earlier in the workup of such patients.


2019 ◽  
Vol 20 (14) ◽  
pp. 1005-1020 ◽  
Author(s):  
Oscar Suzuki ◽  
Olivia M Dong ◽  
Rachel M Howard ◽  
Tim Wiltshire

Aim: This study assesses the technical performance and cost of a targeted next-generation sequencing (NGS) multigene pharmacogenetic (PGx) test. Materials & methods: A genetic test was developed for 21 PGx genes using molecular inversion probes to generate library fragments for NGS. Performance of this test was assessed using 53 unique reference control cell lines from the Genetic Testing Reference Materials Coordination Program (GeT-RM). Results: 93.7% of variants were successfully called and the repeatability rate was 99.9%. Reference calls were available for 78.4% of diplotype calls resulting from PGx testing, and concordance for the test was 85.7%. Cost per sample was $32–$56. Conclusion: A targeted NGS assay using molecular inversion probe technology is able to characterize the pharmacogenome efficiently.


2020 ◽  
Vol 154 (1) ◽  
pp. 57-69
Author(s):  
Carlos A Pagan ◽  
Catherine A Shu ◽  
John P Crapanzano ◽  
Galina G Lagos ◽  
Mark B Stoopler ◽  
...  

Abstract Objectives To determine concordance/discordance between morphology and molecular testing (MT) among synchronous pulmonary carcinomas using targeted next generation sequencing (NGS), with and without comprehensive molecular review (CMR), vs analyses of multiple singe genes (non-NGS). Methods Results of morphologic and MT assessment were classified as concordant, discordant, or indeterminate. For discordant cases, comprehensive histologic assessment (CHA) was performed. Results Forty-seven cases with 108 synchronous tumors were identified and underwent MT (NGS, n = 23 and non-NGS, n = 24). Histology and MT were concordant, discordant, and indeterminate in 53% (25/47), 21% (10/47), and 26% (12/47) of cases, respectively. CHA of the 10 discordant cases revised results of three cases. Conclusions There is discordance between histology and MT in a subset of cases and MT provides an objective surrogate for staging synchronous tumors. A limited gene panel is sufficient for objectively assessing a relationship if the driver mutations are distinct. Relatedness of mutations require CMR with a larger NGS panel (eg, 50 genes).


Sign in / Sign up

Export Citation Format

Share Document