Single-cell Transcriptome Analyses Reveal Molecular Signals to Intrinsic and Acquired Paclitaxel Resistance in Esophageal Squamous Cancer Cells

2018 ◽  
Vol 420 ◽  
pp. 156-167 ◽  
Author(s):  
Hongjin Wu ◽  
Sean Chen ◽  
Juehua Yu ◽  
Ying Li ◽  
Xiao-yan Zhang ◽  
...  
Cell ◽  
2015 ◽  
Vol 161 (5) ◽  
pp. 1175-1186 ◽  
Author(s):  
Yuping Luo ◽  
Volkan Coskun ◽  
Aibing Liang ◽  
Juehua Yu ◽  
Liming Cheng ◽  
...  

2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Ziwen Li ◽  
Emmanouil G Solomonidis ◽  
Rodger Duffin ◽  
Ross Dobie ◽  
Marlene S Mahalhaes ◽  
...  

2018 ◽  
Author(s):  
Detu Zhu ◽  
Xianglan Zhaozu ◽  
Guimei Cui ◽  
Shiehong Chang ◽  
Yi Xiang See ◽  
...  

AbstractEstrogen regulates diverse physiological effects and drives breast tumor progression by directly activating estrogen receptor α (ERα). However, due to the stochastic nature of gene transcription and the resulting heterogeneous cellular response, it is important to investigate estrogen-stimulated gene expression profiles at the single-cell level in order to fully understand how ERα regulates transcription in breast cancer cells. In this study, we performed single-cell transcriptome analysis on ERα-positive breast cancer cell lines following 17β-estradiol stimulation. Overall, we observed robust gene expression diversity between individual cells. Moreover, we found over two thirds of the genes in breast cancer cells displayed a bimodal expression pattern, which caused averaging artifacts and masked the identification of potential estrogen-regulated genes. We overcame this issue by reconstructing a dynamic estrogen-responsive transcriptional network from discrete time points into a pseudotemporal continuum. Pathway analysis of the differentially expressed genes derived from the pseudotemporal analysis showed an estrogen-stimulated metabolic switch that favored biosynthesis and cell proliferation but reduced estrogen degradation. In addition, we identified folate-mediated one-carbon metabolism as a novel estrogen-regulated pathway in breast cancer cells. Notably, estrogen stimulation reprogramed this pathway through the mitochondrial folate pathway to coordinately fuel polyamine and de novo purine synthesis. Finally, we showed AZIN1 and PPAT, key regulators in the above pathways, are direct ERα target genes and essential for breast cancer cell survival and growth. In summary, our single-cell study illustrated a dynamic transcriptional heterogeneity in ERα-positive breast cancer cells in response to estrogen stimulation and uncovered a novel mechanism of an estrogen-mediated metabolic switch.


2019 ◽  
Vol 157 (6) ◽  
pp. 1556-1571.e5 ◽  
Author(s):  
Sin-Ting Lau ◽  
Zhixin Li ◽  
Frank Pui-Ling Lai ◽  
Kathy Nga-Chu Lui ◽  
Peng Li ◽  
...  

Author(s):  
Xiangmei Zhang ◽  
Igor Mandric ◽  
Kevin H. Nguyen ◽  
Thao T. T. Nguyen ◽  
Matteo Pellegrini ◽  
...  

The developing retina expresses multiple bHLH transcription factors. Their precise functions and interactions in uncommitted retinal progenitors remain to be fully elucidated. Here, we investigate the roles of bHLH factors ATOH7 and Neurog2 in human ES cell-derived retinal organoids. Single cell transcriptome analyses identify three states of proliferating retinal progenitors: pre-neurogenic, neurogenic, and cell cycle-exiting progenitors. Each shows different expression profile of bHLH factors. The cell cycle-exiting progenitors feed into a postmitotic heterozygous neuroblast pool that gives rise to early born neuronal lineages. Elevating ATOH7 or Neurog2 expression accelerates the transition from the pre-neurogenic to the neurogenic state, and expands the exiting progenitor and neuroblast populations. In addition, ATOH7 and Neurog2 significantly, yet differentially, enhance retinal ganglion cell and cone photoreceptor production. Moreover, single cell transcriptome analyses reveal that ATOH7 and Neurog2 each assert positive autoregulation, and both suppress key bHLH factors associated with the pre-neurogenic and states and elevate bHLH factors expressed by exiting progenitors and differentiating neuroblasts. This study thus provides novel insight regarding how ATOH7 and Neurog2 impact human retinal progenitor behaviors and neuroblast fate choices.


Sign in / Sign up

Export Citation Format

Share Document