scholarly journals Activation of Hedgehog Signaling Promotes Development of Mouse and Human Enteric Neural Crest Cells, Based on Single-Cell Transcriptome Analyses

2019 ◽  
Vol 157 (6) ◽  
pp. 1556-1571.e5 ◽  
Author(s):  
Sin-Ting Lau ◽  
Zhixin Li ◽  
Frank Pui-Ling Lai ◽  
Kathy Nga-Chu Lui ◽  
Peng Li ◽  
...  
Cell ◽  
2015 ◽  
Vol 161 (5) ◽  
pp. 1175-1186 ◽  
Author(s):  
Yuping Luo ◽  
Volkan Coskun ◽  
Aibing Liang ◽  
Juehua Yu ◽  
Liming Cheng ◽  
...  

2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Ziwen Li ◽  
Emmanouil G Solomonidis ◽  
Rodger Duffin ◽  
Ross Dobie ◽  
Marlene S Mahalhaes ◽  
...  

2021 ◽  
Author(s):  
Peter Fabian ◽  
Kuo-Chang Tseng ◽  
Mathi Thiruppathy ◽  
Claire Arata ◽  
Hung-Jhen Chen ◽  
...  

AbstractThe cranial neural crest generates a huge diversity of derivatives, including the bulk of connective and skeletal tissues of the vertebrate head. How neural crest cells acquire such extraordinary lineage potential remains unresolved. By integrating single-cell transcriptome and chromatin accessibility profiles of cranial neural crest-derived cells across the zebrafish lifetime, we observe region-specific establishment of enhancer accessibility for distinct fates. Neural crest-derived cells rapidly diversify into specialized progenitors, including multipotent skeletal progenitors, stromal cells with a regenerative signature, fibroblasts with a unique metabolic signature linked to skeletal integrity, and gill-specific progenitors generating cell types for respiration. By retrogradely mapping the emergence of lineage-specific chromatin accessibility, we identify a wealth of candidate lineage-priming factors, including a Gata3 regulatory circuit for respiratory cell fates. Rather than multilineage potential being an intrinsic property of cranial neural crest, our findings support progressive and region-specific chromatin remodeling underlying acquisition of diverse neural crest lineage potential.HighlightsSingle-cell transcriptome and chromatin atlas of cranial neural crestProgressive emergence of region-specific cell fate competencyChromatin accessibility mapping identifies candidate lineage regulatorsGata3 function linked to gill-specific respiratory programGraphical Abstract


Author(s):  
Xiangmei Zhang ◽  
Igor Mandric ◽  
Kevin H. Nguyen ◽  
Thao T. T. Nguyen ◽  
Matteo Pellegrini ◽  
...  

The developing retina expresses multiple bHLH transcription factors. Their precise functions and interactions in uncommitted retinal progenitors remain to be fully elucidated. Here, we investigate the roles of bHLH factors ATOH7 and Neurog2 in human ES cell-derived retinal organoids. Single cell transcriptome analyses identify three states of proliferating retinal progenitors: pre-neurogenic, neurogenic, and cell cycle-exiting progenitors. Each shows different expression profile of bHLH factors. The cell cycle-exiting progenitors feed into a postmitotic heterozygous neuroblast pool that gives rise to early born neuronal lineages. Elevating ATOH7 or Neurog2 expression accelerates the transition from the pre-neurogenic to the neurogenic state, and expands the exiting progenitor and neuroblast populations. In addition, ATOH7 and Neurog2 significantly, yet differentially, enhance retinal ganglion cell and cone photoreceptor production. Moreover, single cell transcriptome analyses reveal that ATOH7 and Neurog2 each assert positive autoregulation, and both suppress key bHLH factors associated with the pre-neurogenic and states and elevate bHLH factors expressed by exiting progenitors and differentiating neuroblasts. This study thus provides novel insight regarding how ATOH7 and Neurog2 impact human retinal progenitor behaviors and neuroblast fate choices.


Sign in / Sign up

Export Citation Format

Share Document