Imaging and tracking an electrostatic charge micro-domain by Kelvin force microscopy as evidence of water adsorption on mica surface

2020 ◽  
Vol 20 (12) ◽  
pp. 1391-1395
Author(s):  
L.I. Ruiz-Ortega ◽  
P. Mesquida ◽  
G. Schitter ◽  
B. Tang
2011 ◽  
Vol 47 (17) ◽  
pp. 4974 ◽  
Author(s):  
Shigeto Inoue ◽  
Takayuki Uchihashi ◽  
Daisuke Yamamoto ◽  
Toshio Ando

2019 ◽  
Vol 10 ◽  
pp. 2440-2448 ◽  
Author(s):  
Quentin Evrard ◽  
Giuseppe Cucinotta ◽  
Felix Houard ◽  
Guillaume Calvez ◽  
Yan Suffren ◽  
...  

The terbium(III) ion is a particularly suitable candidate for the creation of surface-based magnetic and luminescent devices. In the present work, we report the epitaxial growth of needle-like objects composed of [Tb(hfac)3·2H2O] n (where hfac = hexafluoroacetylacetonate) polymeric units on muscovite mica, which is observed by atomic force microscopy. The needle-like shape mimics the structure observed in the crystalline bulk material. The growth of this molecular organization is assisted by water adsorption on the freshly air-cleaved muscovite mica. This deposition technique allows for the observation of a significant amount of nanochains grown along three preferential directions 60° apart from another. The magnetic properties and the luminescence of the nanochains can be detected without the need of surface-dedicated instrumentation. The intermediate value of the observed luminescence lifetime of the deposits (132 µs) compared to that of the bulk (375 µs) and the CHCl3 solution (13 µs) further reinforces the idea of water-induced growth.


COSMOS ◽  
2008 ◽  
Vol 04 (02) ◽  
pp. 173-183
Author(s):  
BOON TEE ONG ◽  
PARAYIL KUMARAN AJIKUMAR ◽  
SURESH VALIYAVEETTIL

The present article reviews the self-assembly of oligopeptides to form nanostructures, both in solution and in solid state. The solution structures of the peptides were examined using circular dichroism and dynamic light scattering. The solid state assembly was examined by adsorbing the peptides onto a mica surface and analyzing it using atomic force microscopy. The role of pH and salt concentration on the peptide self-assembly was also examined. Nanostructures within a size range of 3–10 nm were obtained under different conditions.


Sign in / Sign up

Export Citation Format

Share Document