The method of minimizing the impact of local residual electrostatic charge on dimensional measurement accuracy in atomic force microscopy measurements

2011 ◽  
Vol 22 (9) ◽  
pp. 094022 ◽  
Author(s):  
Andrzej Sikora
2020 ◽  
Vol 992 ◽  
pp. 580-584
Author(s):  
V.Yu. Chukhlanov ◽  
O.G. Selivanov ◽  
N.V. Chukhlanova

New materials based on oligooxidridsilmethylensiloxysilane nanostructured with ethyl ester of orthosilicic acid – tetraethoxysilane have been studied in the research. Tetraethoxysilane introduction into the composition is supposed to cause its decomposition up to nanoparticles of silicon oxide. The alkoxysilane hydrolytic destruction kinetics and the impact of the composition and nature of the polymer composition components on the physical properties have been studied. Atomic force microscopy was used to study the structurization kinetics of the polymer composition. The composition hydrophobicity was determined by the edge wetting angle. To study the adhesion characteristics of the obtained material, the method of disc separation from the substrate has been used. The relative rigidity has been determined by a pendulum device M3. Atomic force microscopy revealed the presence of nanoscale neoplasms (at average of one hundred twenty per one square micrometer) in diameter from two to five nanometers in the surface structure of the composition, modified with tetraethoxysilane. Herewith the physical properties of the material change: rigidity increases, the edge angle of wetting increases as well. The studied nanostructured compositions can also be applied. For example – they can be used as a protective coating with a set of special properties, such as high hydrophobicity.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1794 ◽  
Author(s):  
Thomas Weatherley ◽  
Fabien Massabuau ◽  
Menno Kappers ◽  
Rachel Oliver

Nanoscale structure has a large effect on the optoelectronic properties of InGaN, a material vital for energy saving technologies such as light emitting diodes. Photoconductive atomic force microscopy (PC-AFM) provides a new way to investigate this effect. In this study, PC-AFM was used to characterise four thick (∼130 nm) In x Ga 1 − x N films with x = 5%, 9%, 12%, and 15%. Lower photocurrent was observed on elevated ridges around defects (such as V-pits) in the films with x ≤ 12 %. Current-voltage curve analysis using the PC-AFM setup showed that this was due to a higher turn-on voltage on these ridges compared to surrounding material. To further understand this phenomenon, V-pit cross sections from the 9% and 15% films were characterised using transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. This identified a subsurface indium-deficient region surrounding the V-pit in the lower indium content film, which was not present in the 15% sample. Although this cannot directly explain the impact of ridges on turn-on voltage, it is likely to be related. Overall, the data presented here demonstrate the potential of PC-AFM in the field of III-nitride semiconductors.


2018 ◽  
Author(s):  
Massimiliano Galluzzi ◽  
Carsten Schulte ◽  
Paolo Milani ◽  
Alessandro Podestà

The study of the toxicity, biocompatibility, and environmental sustainability of room-temperature Ionic Liquids (ILs) is still in its infancy. Understanding the impact of ILs on living organisms, especially from the aquatic ecosystem, is urgent, since on one side large amounts of these substances are widely employed as solvents in industrial chemical processes, and on the other side evidences of toxic effects of ILs on microorganisms and single cells have been observed. To date, the toxicity of ILs have been investigated by means of macroscopic assays aimed at characterizing the effective concentrations (like the EC50) that cause the dead of a significant fraction of the population of microorganisms and cells. These studies allowed to identify the cell membrane as the first target of the IL interaction, whose effectiveness was correlated to the lipophilicity of the cation, i.e. to the length of the lateral alkyl chain. Our study aimed at characterizing the molecular mechanisms of the toxicity of ILs. To this purpose, we carried out a combined topographic and mechanical analysis by Atomic Force Microscopy of living breast metastatic cancer cells (MDA-MB-231) upon interaction with imidazolium-based ILs. We showed that ILs are able to induce modifications of the overall rigidity (effective Young modulus) and morphology of the cells. Our results demonstrate that ILs act on the physical properties of the cell membrane, and possibly induce cytoskeletal reorganization, already at concentrations below the EC50. These potentially toxic effects are stronger at higher IL concentrations, as well as with longer lateral chains in the cation.<br>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
J. K. Wenderott ◽  
Carmen G. Flesher ◽  
Nicki A. Baker ◽  
Christopher K. Neeley ◽  
Oliver A. Varban ◽  
...  

AbstractObesity-related type 2 diabetes (DM) is a major public health concern. Adipose tissue metabolic dysfunction, including fibrosis, plays a central role in DM pathogenesis. Obesity is associated with changes in adipose tissue extracellular matrix (ECM), but the impact of these changes on adipose tissue mechanics and their role in metabolic disease is poorly defined. This study utilized atomic force microscopy (AFM) to quantify difference in elasticity between human DM and non-diabetic (NDM) visceral adipose tissue. The mean elastic modulus of DM adipose tissue was twice that of NDM adipose tissue (11.50 kPa vs. 4.48 kPa) to a 95% confidence level, with significant variability in elasticity of DM compared to NDM adipose tissue. Histologic and chemical measures of fibrosis revealed increased hydroxyproline content in DM adipose tissue, but no difference in Sirius Red staining between DM and NDM tissues. These findings support the hypothesis that fibrosis, evidenced by increased elastic modulus, is enhanced in DM adipose tissue, and suggest that measures of tissue mechanics may better resolve disease-specific differences in adipose tissue fibrosis compared with histologic measures. These data demonstrate the power of AFM nanoindentation to probe tissue mechanics, and delineate the impact of metabolic disease on the mechanical properties of adipose tissue.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
R. Parker Eason ◽  
Andrew J. Dick

Displacement measurement in atomic force microscopy (AFM) is most commonly obtained indirectly by measuring the slope of the AFM probe and applying a calibration factor. Static calibration techniques operate on the assumption that the probe response approximates single mode behavior. For off-resonance excitation or different operating conditions the contribution of higher modes may become significant. In this paper, changes to the calibrated slope-displacement relationship and the corresponding implications on measurement accuracy are investigated. A model is developed and numerical simulations are performed to examine the effect of laser spot position, tip mass, quality factor and excitation frequency on measurement accuracy. Free response conditions and operation under nonlinear tip-sample forces are considered. Results are verified experimentally using a representative macroscale system. A laser spot positioned at a nominal position between x = 0.5 and 0.6 is determined to minimize optical lever measurement error under conditions where the response is dominated by contributions from the first two modes, due to excitation as well as other factors.


2022 ◽  
Vol 23 (2) ◽  
pp. 889
Author(s):  
Atsuya Matsui ◽  
Jean-Pierre Bellier ◽  
Takeshi Kanai ◽  
Hiroki Satooka ◽  
Akio Nakanishi ◽  
...  

The most common type of dementia, Alzheimer’s disease, is associated with senile plaques formed by the filamentous aggregation of hydrophobic amyloid-β (Aβ) in the brains of patients. Small oligomeric assemblies also occur and drugs and chemical compounds that can interact with such assemblies have attracted much attention. However, these compounds need to be solubilized in appropriate solvents, such as ethanol, which may also destabilize their protein structures. As the impact of ethanol on oligomeric Aβ assembly is unknown, we investigated the effect of various concentrations of ethanol (0 to 7.2 M) on Aβ pentameric assemblies (Aβp) by combining blue native-PAGE (BN-PAGE) and ambient air atomic force microscopy (AFM). This approach was proven to be very convenient and reliable for the quantitative analysis of Aβ assembly. The Gaussian analysis of the height histogram obtained from the AFM images was correlated with band intensity on BN-PAGE for the quantitative estimation of Aβp. Our observations indicated up to 1.4 M (8.3%) of added ethanol can be used as a solvent/vehicle without quantitatively affecting Aβ pentamer stability. Higher concentration induced significant destabilization of Aβp and eventually resulted in the complete disassembly of Aβp.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 468
Author(s):  
Maria Maares ◽  
Claudia Keil ◽  
Leif Löher ◽  
Andreas Weber ◽  
Amsatou Andorfer-Sarr ◽  
...  

Monitoring biomechanics of cells or tissue biopsies employing atomic force microscopy (AFM) offers great potential to identify diagnostic biomarkers for diseases, such as colorectal cancer (CRC). Data on the mechanical properties of CRC cells, however, are still scarce. There is strong evidence that the individual zinc status is related to CRC risk. Thus, this study investigates the impact of differing zinc supply on the mechanical response of the in vitro CRC cell lines HT-29 and HT-29-MTX during their early proliferation (24–96 h) by measuring elastic modulus, relaxation behavior, and adhesion factors using AFM. The differing zinc supply severely altered the proliferation of these cells and markedly affected their mechanical properties. Accordingly, zinc deficiency led to softer cells, quantitatively described by 20–30% lower Young’s modulus, which was also reflected by relevant changes in adhesion and rupture event distribution compared to those measured for the respective zinc-adequate cultured cells. These results demonstrate that the nutritional zinc supply severely affects the nanomechanical response of CRC cell lines and highlights the relevance of monitoring the zinc content of cancerous cells or biopsies when studying their biomechanics with AFM in the future.


Sign in / Sign up

Export Citation Format

Share Document