Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites

Carbon ◽  
2010 ◽  
Vol 48 (3) ◽  
pp. 592-603 ◽  
Author(s):  
Shin-Yi Yang ◽  
Chen-Chi M. Ma ◽  
Chih-Chun Teng ◽  
Yen-Wei Huang ◽  
Shu-Hang Liao ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
C. Kostagiannakopoulou ◽  
E. Fiamegkou ◽  
G. Sotiriadis ◽  
V. Kostopoulos

The present study attempts to investigate the influence of multiwalled carbon nanotubes (MWCNTs) and graphite nanoplatelets (GNPs) on thermal conductivity (TC) of nanoreinforced polymers and nanomodified carbon fiber epoxy composites (CFRPs). Loading levels from 1 to 3% wt. of MWCNTs and from 1 to 15% wt. of GNPs were used. The results indicate that TC of nanofilled epoxy composites increased with the increase of GNP content. Quantitatively, 176% and 48% increase of TC were achieved in nanoreinforced polymers and nanomodified CFRPs, respectively, with the addition of 15% wt. GNPs into the epoxy matrix. Finally, micromechanical models were applied in order to predict analytically the TC of polymers and CFRPs. Lewis-Nielsen model with optimized parameters provides results very close to the experimental ones in the case of polymers. As far as the composites are concerned, the Hashin and Clayton models proved to be sufficiently accurate for the prediction at lower filler contents.


2020 ◽  
Vol 195 ◽  
pp. 108161 ◽  
Author(s):  
Zhiqiang Yao ◽  
Chengguo Wang ◽  
Ruijiao Lu ◽  
Shunsheng Su ◽  
Jianjie Qin ◽  
...  

2021 ◽  
Author(s):  
Ding Lou ◽  
Hammad Younes ◽  
Jack Yang ◽  
Bharat Jasthi ◽  
George Hong ◽  
...  

Abstract Carbon nanotubes (CNTs) and nanofibers (CNFs) are well-known nano additives that produce coating materials with high electrical and thermal conductivity and corrosion resistance. In this paper, coating materials incorporating hydrogen bonding offered significantly lower electrical resistance. The hydrogen bonding formed between functionalized carbon nanotubes and ethanol helped create a well-dispersed carbon nanotube network as the electron pathways. Electrical resistivity as low as 6.8 Ω⋅cm has been achieved by adding 4.5 wt.% functionalized multiwalled carbon nanotubes (MWNT-OH) to 75%Polyurethane/25%Ethanol. Moreover, the thermal conductivity of Polyurethane was improved by 332% with 10 wt.% addition of CNF. Electrochemical methods were used to evaluate the anti-corrosion properties of the fabricated coating materials. Polyurethane with the addition of 3 wt.% of MWNT-OH showed an excellent corrosion rate of 5.105×10-3 mm/year, with a protection efficiency of 99.5% against corrosive environments. The adhesion properties of the coating materials were measured following ASTM standard test methods. Polyurethane with 3 wt.% of MWNT-OH belonged to class 5 (ASTM D3359), indicating the outstanding adhesion of the coating to the substrate. These nano coatings with enhanced electrical, thermal, and anti-corrosion properties consist of a choice of traditional coating materials, such as Polyurethane, yielding coating durability with the ability to tailor the electrical and thermal properties to fit the desired application.


Carbon ◽  
2010 ◽  
Vol 48 (6) ◽  
pp. 1824-1834 ◽  
Author(s):  
Peng-Cheng Ma ◽  
Shan-Yin Mo ◽  
Ben-Zhong Tang ◽  
Jang-Kyo Kim

Sign in / Sign up

Export Citation Format

Share Document