Theoretical investigations into the hydrogen evolution reaction of the carbon schwarzites: From electronics to structure-catalytic activity relationship

Carbon ◽  
2022 ◽  
Author(s):  
Jun Ho Seok ◽  
Byeongsun Jun ◽  
Chi Ho Lee ◽  
Sang Uck Lee
2021 ◽  
Vol 60 (3) ◽  
pp. 1604-1611
Author(s):  
Zepeng Lv ◽  
Meng Wang ◽  
Dong Liu ◽  
Kailiang Jian ◽  
Run Zhang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Shi ◽  
Zhi-Rui Ma ◽  
Yi-Ying Xiao ◽  
Yun-Chao Yin ◽  
Wen-Mao Huang ◽  
...  

AbstractTuning metal–support interaction has been considered as an effective approach to modulate the electronic structure and catalytic activity of supported metal catalysts. At the atomic level, the understanding of the structure–activity relationship still remains obscure in heterogeneous catalysis, such as the conversion of water (alkaline) or hydronium ions (acid) to hydrogen (hydrogen evolution reaction, HER). Here, we reveal that the fine control over the oxidation states of single-atom Pt catalysts through electronic metal–support interaction significantly modulates the catalytic activities in either acidic or alkaline HER. Combined with detailed spectroscopic and electrochemical characterizations, the structure–activity relationship is established by correlating the acidic/alkaline HER activity with the average oxidation state of single-atom Pt and the Pt–H/Pt–OH interaction. This study sheds light on the atomic-level mechanistic understanding of acidic and alkaline HER, and further provides guidelines for the rational design of high-performance single-atom catalysts.


RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 14063-14070
Author(s):  
M. Morishita ◽  
A. Nozaki ◽  
H. Yamamoto ◽  
N. Fukumuro ◽  
M. Mori ◽  
...  

The catalytic activity of the Co-doped WC is 30% higher than that of Pt nanoparticles for the hydrogen evolution reaction arising from an internal magnetic field.


2021 ◽  
Author(s):  
Changhai Liu ◽  
Yanhua Yao ◽  
Lei Sun ◽  
Linlin Luo ◽  
Wenchang Wang ◽  
...  

Herein, we present hierarchical Mo-doped NiCoP@carbon microspheres, which exhibits noticeable enhancement of catalytic activity and fast kinetics for hydrogen evolution. An overpotentials of 74.6 mV at 10 mA cm-2 and...


2017 ◽  
Vol 5 (43) ◽  
pp. 22805-22812 ◽  
Author(s):  
Cuncai Lv ◽  
Zhipeng Huang ◽  
Qianpeng Yang ◽  
Guangfeng Wei ◽  
Zuofeng Chen ◽  
...  

A facile and ultrafast synthesis of molybdenum carbide coated with few-layer carbon (MoC/C) has been developed, and the effect of reducing the thickness of the carbon coating on its catalytic activity in the hydrogen evolution reaction (HER) has been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document