Cellulose biosynthesis using simple sugars available in residual cacao mucilage exudate

2021 ◽  
pp. 118645
Author(s):  
Olga L. Saavedra-Sanabria ◽  
Daniel Durán ◽  
Jessica Cabezas ◽  
Inés Hernández ◽  
Cristian Blanco-Tirado ◽  
...  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


2005 ◽  
Vol 96 (1) ◽  
pp. 9-21 ◽  
Author(s):  
INDER M. SAXENA ◽  
R. MALCOLM BROWN

Science ◽  
1998 ◽  
Vol 279 (5351) ◽  
pp. 717-720 ◽  
Author(s):  
Tony Arioli ◽  
Liangcai Peng ◽  
Andreas S. Betzner ◽  
Joanne Burn ◽  
Werner Wittke ◽  
...  

Science ◽  
1975 ◽  
Vol 189 (4208) ◽  
pp. 1094-1095 ◽  
Author(s):  
G. Leppard

2013 ◽  
pp. 183-193 ◽  
Author(s):  
Catherine Rayon ◽  
Anna T. Olek ◽  
Nicholas C. Carpita

1991 ◽  
Vol 30 (10) ◽  
pp. 3499-3500
Author(s):  
Gerhard Franz

2019 ◽  
Vol 34 (1) ◽  
pp. 125-128
Author(s):  
Nicholas L. Hurdle ◽  
Timothy L. Grey ◽  
Patrick E. McCullough ◽  
Donn Shilling ◽  
Jason Belcher

AbstractBermudagrass is a major forage species throughout Georgia and the Southeast. An essential part of achieving high-yielding, top-quality forages is proper weed control. Indaziflam is a residual herbicide that controls many broadleaf and grass species by inhibiting cellulose biosynthesis. Research conducted in Tift and Colquitt counties in Georgia determined optimal PRE rates for indaziflam for bermudagrass forage production. Treatments applied at spring greenup of established ‘Alicia’ bermudagrass included indaziflam at 47, 77, 155, or 234 g ai ha−1 PRE, pendimethalin at 4,480 g ha−1 PRE, a split application of indaziflam at 47 g ha−1 PRE followed by the same rate applied POST after the first cutting, and a nontreated control (seven treatments in all). Forages were machine harvested three times each year for each location beginning at least 47 d after treatment (DAT), with final cuttings up to 168 DAT. For all treatments, fresh- and dry-weight yields at each harvest and totals for the season did not differ from the nontreated control. Indaziflam at 155 and 234 g ha−1 did cause minor stunting at 44 DAT, but this was transient and not observed at the second harvest. Indaziflam applied PRE has the potential to provide residual control of troublesome weeds in bermudagrass forage and hay production, with ephemeral stunting at the recommended application rates.


Sign in / Sign up

Export Citation Format

Share Document