residual herbicide
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 3 ◽  
Author(s):  
Sarah Striegel ◽  
Maxwel C. Oliveira ◽  
Ryan P. DeWerff ◽  
David E. Stoltenberg ◽  
Shawn P. Conley ◽  
...  

Roundup Ready 2 Xtend® [glyphosate- and dicamba-resistant (DR)] soybean is a novel trait option for postemergence (POST) control of herbicide-resistant broadleaf weeds in soybean. With increased use of labeled dicamba products POST in DR soybean and recommendations to include a soil-residual herbicide POST (e.g., layered residual approach), research on how combinations of these approaches influence weed control, weed seed production, and soybean grain yield is warranted. The objective of this research was to evaluate the effects of (1) flumioxazin applied preemergence (PRE) followed by (fb) dicamba plus glyphosate applied POST at different crop developmental stages and (2) acetochlor POST as a layered residual approach on weed control, weed seed production, and soybean yield to determine the optimal POST timing in DR soybean. A field study was conducted in Wisconsin at three sites in 2018 and four sites in 2019 to evaluate flumioxazin (43.4 g ai ha−1, WDG 51%) PRE fb dicamba (560 g ae ha−1, SL) plus glyphosate (1,101 g ae ha−1, SL) POST in DR soybean at three stages: early-POST (EPOST, V1-V2), mid-POST (MPOST, V3-V4), and late-POST (LPOST, V5-V6/R1) with or without a soil-residual herbicide POST (acetochlor, 1,262 g ai ha−1, ME). Weed community composition was site-specific; difficult-to-control broadleaf species included giant ragweed (Ambrosia trifida L.) and waterhemp [Amaranthus tuberculatus (Moq.) J.D. Sauer]. Dicamba plus glyphosate applied MPOST and LPOST provided greater control, weed biomass reduction, and density reduction of giant ragweed and waterhemp when compared with EPOST treatments. Giant ragweed and waterhemp had not reached 100% cumulative emergence at EPOST, and plants that emerged after EPOST produced seed. There was some benefit to including acetochlor as a layered residual at EPOST as indicated by a residual by POST timing interaction for waterhemp density reduction. Complete waterhemp control was not attained at one site-year. For remaining site-years, dicamba plus glyphosate applied MPOST (V3-V4) provided season-long weed control, reduced weed seed production, and optimized soybean grain yield compared with other POST treatments. Results highlight the importance of timely POST applications and suggest utilization of a POST layered residual needs to be timed appropriately for the window of active weed species emergence.


2021 ◽  
pp. 1-23
Author(s):  
Connor L. Hodgskiss ◽  
Travis R. Legleiter ◽  
Bryan G. Young ◽  
William G. Johnson

Commercialization of 2,4-D-resistant soybean varieties allows for postemergence (POST) applications of 2,4-D in soybean. With the increase in POST applications of 2,4-D in soybean, shifts in weed populations may occur. A long-term field trial was conducted over seven years in a corn-soybean rotation. Weed populations were subjected to four herbicide strategies with variable levels of 2,4-D reliance. The strategies used included: 1) diversified glyphosate strategy with six herbicide sites of action (SOA); 2) 2,4-D reliant strategy with three SOA; 3) diversified 2,4-D reliant strategy with seven SOA; and 4) fully diversified strategy with eight SOA. Soil residual herbicides were utilized for both corn and soybean years, except for the 2,4-D reliant strategy which only utilized a residual herbicide during the corn years. A 52% or greater reduction in weed densities for all herbicide strategies, except the 2,4-D reliant strategy, was observed by the end of the study. However, the density of weeds tolerant to 2,4-D, such as monocots, increased after three years of selection pressure, and more than doubled after five years of selection pressure in the 2,4-D reliant strategy. Additionally, in the 2,4-D reliant strategy with three SOA, species richness was 30% higher in the soil seedbank compared to herbicides strategies with six or more SOA. In order to delay weed shifts, diversified herbicide strategies with more than three SOA that include residual herbicides should be used in corn:soybean rotational systems that utilize 2,4-D-resistant soybean.


HortScience ◽  
2021 ◽  
pp. 1-8
Author(s):  
Thierry E. Besançon

Cranberry (Vaccinium macrocarpon Ait.) cultivars are clonally propagated. Germination of cranberry seeds produces off-type varieties that are generally characterized by lower fruit productivity and higher vegetative vigor. Over time, the productivity of cranberry beds decreases as off-type frequency increases over time. Improved knowledge of cranberry germination biology would facilitate the use of targeted agronomic practices to reduce the emergence and growth of less productive off-types. The influences of light, temperature regime, pH, and water potential on cranberry seed germination were assessed in a growth chamber, whereas the effect of seeding depth on seedling emergence was evaluated in a greenhouse. Seeds stratified for 6 months at 3 °C were used for these experiments. Cranberry germination was influenced by light quality, with maximum germination reaching 95% after 15 minutes of exposure to red light but decreasing to 89% under far-red light. However, light was not required for inducing germination. Cranberry seeds germinated over a range of alternating diurnal/nocturnal temperatures between 5 and 30 °C, with an average maximum germination of 97% occurring for diurnal temperatures of 20 to 25 °C. The length of emerged seedlings was reduced by an average of 75% for pH 6 to 8 compared with pH 3 to 5. Seedlings that emerged at pH greater than 5 showed increasing chlorotic and necrotic injuries and were not considered viable at pH 7 or 8. Germination at 15 °C was reduced when seeds were subjected to water stress as low as −0.2 MPa, and no germination occurred below −0.4 MPa. Seeds incubated at 25 °C were more tolerant to water stress, with at least 70% maximum germination for osmotic potential (ψS) −0.6 MPa or greater. The average seedling emergence was 91% for seeds left on the soil surface or buried at a maximum depth of 1 cm; however, it was null at a burying depth of 4 cm. These results indicate that germination of cranberry seeds in cultivated beds in the northeastern United States likely occurs during the summer months, when temperatures are optimal and the moisture requirement is supported by irrigation. However, timely application of residual herbicide or sanding (a traditional cranberry agronomic practice) of open areas in cranberry beds could help prevent seed germination and reduce minimizing the onset of off-type varieties.


2021 ◽  
pp. 1-39
Author(s):  
Nathan H. Haugrud ◽  
Thomas J. Peters

Abstract The invasion of waterhemp into northern sugarbeet growing regions has prompted producers to re-integrate inter-row cultivation into weed management programs as no currently registered herbicides can control glyphosate-resistant waterhemp POST in crop. Inter-row cultivation was a common weed control practice in sugarbeet until the release of glyphosate-resistant sugarbeet cultivars in 2008 made the use of inter-row cultivation unnecessary. In the late 2010s, producers began again to use inter-row cultivation to remove weeds that glyphosate did not control, but producers need information on the effectiveness and safety of inter-row cultivation when used with soil residual herbicide programs. Efficacy and tolerance field experiments were conducted in Minnesota and North Dakota from 2017 to 2019. Results from the efficacy experiment demonstrated cultivation improved waterhemp control 11% and 12%, 14 and 28 DAT, respectively. Waterhemp response to cultivation was dependent on crop canopy and precipitation after cultivation. Cultivation had minimal effect on waterhemp density in three environments, but at one environment, near Galchutt, ND in 2019, waterhemp density increased 600% and 196%, 14 and 28 DAT, respectively. Climate data indicated Galchutt, ND in 2019 received 105 mm of precipitation in the 14 days following cultivation and had an open crop canopy which likely contributed to further weed emergence. Results from the tolerance experiment demonstrated root yield and recoverable sucrose were not affected by cultivation timing or number of cultivations. In one environment, cultivating reduced sucrose content by 0.8% regardless of date or cultivation number, but no differences were found in three environments. In-season cultivation can damage/destroy leaf tissue which is likely responsible for the reduction in sucrose content. Results indicate cultivation can be a valuable tool to control weeds that herbicide cannot, but excessive rainfall and open crop canopy following cultivation can create an environment conducive to further weed emergence.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1402
Author(s):  
Shital Poudyal ◽  
James S. Owen ◽  
R. Thomas Fernandez ◽  
Bert Cregg

Recycling irrigation return flow is a viable option to achieve sustainability in horticultural production systems, but residual herbicides present in recycled water may be phytotoxic. The sensitivity of plants to residual herbicides may vary depending on the growth stage of the plant. If sensitive growth stages are avoided, the risk associated with using recycled water can be reduced. Here, we quantified the effect of residual oryzalin and oxyfluorfen exposure at various growth stages of Hydrangea paniculata. Exposure to both herbicides reduced plant growth, leaf visual rating, soil plant analysis development (SPAD) chlorophyll index, net photosynthesis, and light-adapted fluorescence of H. paniculata. Herbicide injury was greater for plants exposed to herbicides at early growth stages, however, the recovery rate of those plants was also rapid. For oxyfluorfen, plants produced healthy new growth immediately after the end of exposure, but for oryzalin, even newly formed leaves developed herbicide injury after the end of exposure, therefore leaf damage continued to progress before recovering. However, damage caused by residual herbicide exposure at all growth stages recovered over time. Physiological measurements such as the SPAD index, net photosynthesis, and light-adapted fluorescence responded quickly to herbicides exposure hence provided an early indicator of herbicide damage and recovery.


2020 ◽  
Vol 34 (5) ◽  
pp. 718-726
Author(s):  
Grant L. Priess ◽  
Jason K. Norsworthy ◽  
Trenton L. Roberts ◽  
Edward E. Gbur

AbstractPalmer amaranth is one of the most troublesome weeds of soybean in the United States. To effectively control this weed it is necessary to optimize timing of PRE residual herbicides to mitigate Palmer amaranth emergence. Field studies were conducted in 5 site-years to assess the effect of application timing 12 to 16 d prior to planting (preplant) and at planting (PRE) on soybean injury and longevity of Palmer amaranth control using five residual herbicide treatments. A reduction in longevity of Palmer amaranth control was observed when S-metolachlor + metribuzin and flumioxazin + chlorimuron-ethyl were applied preplant vs. PRE in 2 of the 5 site years. Sulfentrazone, sulfentrazone + cloransulam-methyl, and saflufenacil + dimethenamid-P + pyroxasulfone + metribuzin did not reduce longevity of Palmer amaranth control when applied preplant vs. PRE in all 5 site-years. Visible estimates of soybean injury were lower at 21 d after planting when herbicides were applied 12 to 16 d preplant vs. PRE. These findings suggest that preplant applications can be used to reduce the potential for crop injury and may not result in reduced longevity of control when herbicides with a prolonged residual activity are used. Preplant herbicides increase the likelihood of the residuals being activated prior to subsequent weed emergence as opposed to PRE herbicides applied at soybean planting.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 96 ◽  
Author(s):  
Hugh J. Beckie ◽  
Ken C. Flower ◽  
Michael B. Ashworth

Recent statements from scientific organisations and court decisions have resulted in widespread public interest and concern over the safety of glyphosate, the most popular and effective herbicide used worldwide. Consequently, glyphosate-based products are under intense scrutiny from governments at all levels. Some jurisdictions have already banned or restricted its use, which will adversely impact international trade in bulk grain commmodities if glyphosate residues are detected. The possibility of farming without glyphosate is becoming an important issue facing the agri-food research and development sector. Contingency plans need to be formulated if that scenario becomes a reality. In this review, we briefly summarize international events that have led to this possible situation, describe current glyphosate usage in major agronomic field crops worldwide, outline possible alternatives to glyphosate in two agroregions and perform bioeconomic model scenarios of southern Australian broadacre cropping systems without the herbicide. Model predictions suggest that we can farm profitably without glyphosate by consistently utilizing key non-herbicidal weed management practices combined with robust pre-emergence soil residual herbicide treatments. However, maintaining low weed seed banks will be challenging. If the social license to use glyphosate is revoked, what other pesticides will soon follow?


ael ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Erin M. Grantz ◽  
Deborah Leslie ◽  
Michele Reba ◽  
Cammy Willett

2019 ◽  
Vol 34 (1) ◽  
pp. 125-128
Author(s):  
Nicholas L. Hurdle ◽  
Timothy L. Grey ◽  
Patrick E. McCullough ◽  
Donn Shilling ◽  
Jason Belcher

AbstractBermudagrass is a major forage species throughout Georgia and the Southeast. An essential part of achieving high-yielding, top-quality forages is proper weed control. Indaziflam is a residual herbicide that controls many broadleaf and grass species by inhibiting cellulose biosynthesis. Research conducted in Tift and Colquitt counties in Georgia determined optimal PRE rates for indaziflam for bermudagrass forage production. Treatments applied at spring greenup of established ‘Alicia’ bermudagrass included indaziflam at 47, 77, 155, or 234 g ai ha−1 PRE, pendimethalin at 4,480 g ha−1 PRE, a split application of indaziflam at 47 g ha−1 PRE followed by the same rate applied POST after the first cutting, and a nontreated control (seven treatments in all). Forages were machine harvested three times each year for each location beginning at least 47 d after treatment (DAT), with final cuttings up to 168 DAT. For all treatments, fresh- and dry-weight yields at each harvest and totals for the season did not differ from the nontreated control. Indaziflam at 155 and 234 g ha−1 did cause minor stunting at 44 DAT, but this was transient and not observed at the second harvest. Indaziflam applied PRE has the potential to provide residual control of troublesome weeds in bermudagrass forage and hay production, with ephemeral stunting at the recommended application rates.


2019 ◽  
Vol 14 (2) ◽  
pp. 275-289
Author(s):  
Patrícia de Pádua Marafeli ◽  
Paulo Rebelles Reis ◽  
Leopoldo Ferreira de Oliveira Bernardi ◽  
Elifas Nunes de Alcântara ◽  
Pablo Antonio Martinez

Environmental disturbance, as a result of land use change and/or different agricultural practices, may have negative impacts on the richness and abundance of edaphic mites. The objective of this study was to evaluate the effects of different weed management methods in coffee plantations on edaphic mites, and to compare these results with mite communities of native forest habitats in southeastern Brazil. Soil samples were taken between the rows of a coffee plantation under different weed management methods, such as without weeding, manual weeding, agricultural grid, contact herbicide (glyphosate), residual herbicide (oxyfluorfen), mechanical tiller, and mechanical mower, and in a native forest area. Weed management affected edaphic mite communities, with the residual herbicide treatment having the greatest impact on species composition, abundance, richness and diversity. The use of manual weeding and the maintenance of unweeded areas were the practices that preserved mite communities closest to those found in native forest habitats. Thus, such practices are recommended as best practices in coffee plantations. Among the studied mites, the groups Oribatida and Mesostigmata were found in all sites, presenting the greatest abundance and richness, and were sensitive to different forms of weed control. On this basis, we suggest these groups as indicators of soil quality in coffee plantations.


Sign in / Sign up

Export Citation Format

Share Document