In silico formulation prediction of drug/cyclodextrin/polymer ternary complexes by machine learning and molecular modeling techniques

2022 ◽  
Vol 275 ◽  
pp. 118712
Author(s):  
Junjun Li ◽  
Hanlu Gao ◽  
Zhuyifan Ye ◽  
Jiayin Deng ◽  
Defang Ouyang
2015 ◽  
Vol 22 (5) ◽  
pp. 432-442 ◽  
Author(s):  
Joao Silva ◽  
Flavia Calmon-Hamaty ◽  
Wilson Savino ◽  
Michael Hahne ◽  
Ernesto Caffarena

2014 ◽  
Vol 14 (16) ◽  
pp. 1913-1922 ◽  
Author(s):  
Dimitar Dobchev ◽  
Girinath Pillai ◽  
Mati Karelson

2019 ◽  
Vol 18 (26) ◽  
pp. 2209-2229 ◽  
Author(s):  
Hai Pham-The ◽  
Miguel Á. Cabrera-Pérez ◽  
Nguyen-Hai Nam ◽  
Juan A. Castillo-Garit ◽  
Bakhtiyor Rasulev ◽  
...  

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.


2019 ◽  
Vol 16 (3) ◽  
pp. 256-272
Author(s):  
Uzma Salar ◽  
Khalid Mohammed Khan ◽  
Syeda Abida Ejaz ◽  
Abdul Hameed ◽  
Mariya al-Rashida ◽  
...  

Background: Alkaline Phosphatase (AP) is a physiologically important metalloenzyme that belongs to a large family of ectonucleotidase enzymes. Over-expression of tissue non-specific alkaline phosphatase has been linked with ectopic calcification including vascular and aortic calcification. In Vascular Smooth Muscles Cells (VSMCs), the high level of Reactive Oxygen Species (ROS) resulted in the up-regulation of TNAP. Accordingly, there is a need to identify highly potent and selective inhibitors of APs for treatment of disorders related to hyper activity of APs. </P><P> Methods: Herein, a series of coumarinyl alkyl/aryl sulfonates (1-40) with known Reactive Oxygen Species (ROS) inhibition activity, was evaluated for alkaline phosphatase inhibition against human Tissue Non-specific Alkaline Phosphatase (hTNAP) and Intestinal Alkaline Phosphatase (hIAP). </P><P> Results: With the exception of only two compounds, all other compounds in the series exhibited excellent AP inhibition. For hIAP and hTNAP inhibition, IC50 values were observed in the range 0.62-23.5 &#181;M, and 0.51-21.5 &#181;M, respectively. Levamisole (IC50 = 20.21 &#177; 1.9 &#181;M) and Lphenylalanine (IC50 = 100.1 &#177; 3.15 &#181;M) were used as standards for hIAP and hTNAP inhibitory activities, respectively. 4-Substituted coumarinyl sulfonate derivative 23 (IC50 = 0.62 &#177; 0.02 &#181;M) was found to be the most potent hIAP inhibitor. Another 4-substituted coumarinyl sulfonate derivative 16 (IC50 = 0.51 &#177; 0.03 &#181;M) was found to be the most active hTNAP inhibitor. Some of the compounds were also found to be highly selective inhibitors of APs. Detailed Structure-Activity Relationship (SAR) and Structure-Selectivity Relationship (SSR) analysis were carried out to identify structural elements necessary for efficient and selective AP inhibition. Molecular modeling and docking studies were carried out to rationalize the most probable binding site interactions of the inhibitors with the AP enzymes. In order to evaluate drug-likeness of compounds, in silico ADMETox evaluation was carried out, most of the compounds were found to have favorable ADME profiles with good predicted oral bioavailability. X-ray crystal structures of compounds 38 and 39 were also determined. </P><P> Conclusion: Compounds from this series may serve as lead candidates for future research in order to design even more potent, and selective inhibitors of APs.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2505
Author(s):  
Raheem Remtulla ◽  
Sanjoy Kumar Das ◽  
Leonard A. Levin

Phosphine-borane complexes are novel chemical entities with preclinical efficacy in neuronal and ophthalmic disease models. In vitro and in vivo studies showed that the metabolites of these compounds are capable of cleaving disulfide bonds implicated in the downstream effects of axonal injury. A difficulty in using standard in silico methods for studying these drugs is that most computational tools are not designed for borane-containing compounds. Using in silico and machine learning methodologies, the absorption-distribution properties of these unique compounds were assessed. Features examined with in silico methods included cellular permeability, octanol-water partition coefficient, blood-brain barrier permeability, oral absorption and serum protein binding. The resultant neural networks demonstrated an appropriate level of accuracy and were comparable to existing in silico methodologies. Specifically, they were able to reliably predict pharmacokinetic features of known boron-containing compounds. These methods predicted that phosphine-borane compounds and their metabolites meet the necessary pharmacokinetic features for orally active drug candidates. This study showed that the combination of standard in silico predictive and machine learning models with neural networks is effective in predicting pharmacokinetic features of novel boron-containing compounds as neuroprotective drugs.


2021 ◽  
Vol 61 (9) ◽  
pp. 4266-4279 ◽  
Author(s):  
Kuo Hao Lee ◽  
Andrew D. Fant ◽  
Jiqing Guo ◽  
Andy Guan ◽  
Joslyn Jung ◽  
...  

2021 ◽  
Vol 18 ◽  
pp. 100155
Author(s):  
Zhiyuan Wang ◽  
Piaopiao Zhao ◽  
Xiaoxiao Zhang ◽  
Xuan Xu ◽  
Weihua Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document