In Silico Assessment of ADME Properties: Advances in Caco-2 Cell Monolayer Permeability Modeling

2019 ◽  
Vol 18 (26) ◽  
pp. 2209-2229 ◽  
Author(s):  
Hai Pham-The ◽  
Miguel Á. Cabrera-Pérez ◽  
Nguyen-Hai Nam ◽  
Juan A. Castillo-Garit ◽  
Bakhtiyor Rasulev ◽  
...  

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.

2016 ◽  
Vol 77 (6) ◽  
pp. 1303-1314 ◽  
Author(s):  
Melanie I. Titze ◽  
Otmar Schaaf ◽  
Marco H. Hofmann ◽  
Michael P. Sanderson ◽  
Stephan K. Zahn ◽  
...  

2007 ◽  
Vol 539-543 ◽  
pp. 511-516 ◽  
Author(s):  
Thomas J. Webster

Nanotechnology is being used to mimic structural components of our tissues in synthetic materials intended for various implant applications. Recent studies have highlighted that when compared to flat or micron rough surfaces, surfaces with nanofeatures promote optimal initial protein interactions necessary to mediate cell adhesion and subsequent tissue regrowth. This has been demonstrated for a wide range of implant chemistries (from ceramics to metals to polymers) and for a wide range of tissues (including bone, vascular, cartilage, bladder, and the central and peripheral nervous system). Importantly, these results have been seen at the in vitro and in vivo level. This short review paper will cover some of the more significant advancements in creating better implants through nanotechnology efforts.


2018 ◽  
Vol 243 (6) ◽  
pp. 576-585 ◽  
Author(s):  
ML Martinez-Fierro ◽  
GP Hernández-Delgadillo ◽  
V Flores-Morales ◽  
E Cardenas-Vargas ◽  
M Mercado-Reyes ◽  
...  

Preeclampsia (PE) is a pregnancy complex disease, distinguished by high blood pressure and proteinuria, diagnosed after the 20th gestation week. Depending on the values of blood pressure, urine protein concentrations, symptomatology, and onset of disease there is a wide range of phenotypes, from mild forms developing predominantly at the end of pregnancy to severe forms developing in the early stage of pregnancy. In the worst cases severe forms of PE could lead to systemic endothelial dysfunction, eclampsia, and maternal and/or fetal death. Worldwide the fetal morbidity and mortality related to PE is calculated to be around 8% of the total pregnancies. PE still being an enigma regarding its etiology and pathophysiology, in general a deficient trophoblast invasion during placentation at first stage of pregnancy, in combination with maternal conditions are accepted as a cause of endothelial dysfunction, inflammatory alterations and appearance of symptoms. Depending on the PE multifactorial origin, several in vitro, in vivo, and in silico models have been used to evaluate the PE pathophysiology as well as to identify or test biomarkers predicting, diagnosing or prognosing the syndrome. This review focuses on the most common models used for the study of PE, including those related to placental development, abnormal trophoblast invasion, uteroplacental ischemia, angiogenesis, oxygen deregulation, and immune response to maternal–fetal interactions. The advances in mathematical and computational modeling of metabolic network behavior, gene prioritization, the protein–protein interaction network, the genetics of PE, and the PE prediction/classification are discussed. Finally, the potential of these models to enable understanding of PE pathogenesis and to evaluate new preventative and therapeutic approaches in the management of PE are also highlighted. Impact statement This review is important to the field of preeclampsia (PE), because it provides a description of the principal in vitro, in vivo, and in silico models developed for the study of its principal aspects, and to test emerging therapies or biomarkers predicting the syndrome before their evaluation in clinical trials. Despite the current advance, the field still lacking of new methods and original modeling approaches that leads to new knowledge about pathophysiology. The part of in silico models described in this review has not been considered in the previous reports.


2019 ◽  
Author(s):  
Cheng Wang ◽  
Yimeng Zhou ◽  
Xiaohong Gong ◽  
Li Zheng ◽  
Yunxia Li

Abstract Background: 2,3,5,4'-tetrahydroxystilbence-2-O-β-D-glucoside(TSG) is a polyhydroxyphenolic compound, which exhibits a broad spectrum of pharmacological activities, such asanti-inflammatory, anti-depression, anti-oxidation and anti-atherosclerosis.However, the compound has poor bioavailability and the underlying absorption mechanisms has not been studied. Therefore, the purpose of this study was to investigate the intestinal absorption mechanism of TSG. Methods: This study used the Caco-2 cell monolayer model and the single-passintestinal perfusion modelto explore the intestinal absorption mechanisms of TSG. The effects of basic parameters such as drug concentration, time and pH on the intestinal absorption of TSG were analyzed by high performance liquid chromatography.In addition, the susceptibility of TSG absorption process to treatment with three inhibitors, such as P-gp inhibitors verapamil hydrochloride and quinidine, and the MRP2 inhibitor probenecid were also assessed. Results: TSG is poorly absorbed in the intestines and the absorption of TSG in the stomach is much higher than that in the intestine. Both in vivo and in vitro experiments showed that the absorption of TSG was saturated with increasing concentration. and it was better absorbed in a weakly acidic environment with a pH of 6.4. Moreover, TSG interacts with P-gp and MRP2, and TSG is not only the substrate of the P-gp and MRP2, but also affects the expression of P-gp and MRP2. Conclusions: It can be concluded that the intestinal absorption mechanismsofTSG involve processes passive transport and the participation of efflux transporters.


2019 ◽  
Author(s):  
Linda B Oyama ◽  
Hamza Olleik ◽  
Ana Carolina Nery Teixeira ◽  
Matheus M Guidini ◽  
James A Pickup ◽  
...  

AbstractHerein we report the identification and characterisation of two linear antimicrobial peptides (AMPs), HG2 and HG4, with activity against a wide range of multidrug resistant (MDR) bacteria, especially methicillin resistantStaphylococcus aureus(MRSA) strains, a highly problematic group of Gram-positive bacteria in the hospital and community environment. To identify the novel AMPs presented here, we employed the classifier model design, a feature extraction method using molecular descriptors for amino acids for the analysis, visualization, and interpretation of AMP activities from a rumen metagenomic dataset. This allowed for thein silicodiscrimination of active and inactive peptides in order to define a small number of promising novel lead AMP test candidates for chemical synthesis and experimental evaluation.In vitrodata suggest that the chosen AMPs are fast acting, show strong biofilm inhibition and dispersal activity and are efficacious in anin vivomodel of MRSA USA300 infection, whilst showing little toxicity to human erythrocytes and human primary cell linesex vivo. Observations from biophysical AMP-lipid-interactions and electron microscopy suggest that the newly identified peptides interact with the cell membrane and may be involved in the inhibition of other cellular processes. Amphiphilic conformations associated with membrane disruption are also observed in 3D molecular modelling of the peptides. HG2 and HG4 both preferentially bind to MRSA total lipids rather than with human cell lipids indicating that HG4 may form superior templates for safer therapeutic candidates for MDR bacterial infections.Author SummaryWe are losing our ability to treat multidrug resistant (MDR) bacteria, otherwise known as superbugs. This poses a serious global threat to human health as bacteria are increasingly acquiring resistance to antibiotics. There is therefore urgent need to intensify our efforts to develop new safer alternative drug candidates. We emphasise the usefulness of complementing wet-lab andin silicotechniques for the rapid identification of new drug candidates from environmental samples, especially antimicrobial peptides (AMPs). HG2 and HG4, the AMPs identified in our study show promise as effective therapies for the treatment of methicillin resistantStaphylococcus aureusinfections bothin vitroandin vivowhilst having little cytotoxicity against human primary cells, a step forward in the fight against MDR infections.


2015 ◽  
Vol 14 (2) ◽  
pp. 105-112
Author(s):  
V. S. Kosorukov ◽  
E. N. Kosobokova ◽  
M. V. Pinyugina ◽  
M. A. Sevostyanova ◽  
A. I. Scherbakov ◽  
...  

Pharmaceuticals derived from plants, have become one of the leading commercial directions in modern biotechnology. The benefits that offer these technologies, cannot be matched with any other modern technology for producing drugs from recombinant proteins. Main advantages of plant technologies for production of proteins are easy scalability, efficiency, bio-safety, ease of cultivation and collection of biological material. This approach promises to be the most perspective for production of a wide range of drug substances and vaccines. In current investigation we have analyzed in vitro and in vivo biological activity of plant-derived anti-HER2 recombinant antibodies - phytotrastuzumab. Phytotrastuzumab and trastuzumab have similar activity in grows suppression of breast cancer cells overexpressing HER2 in-vitro and were active in suppression of xenografted tumors SK-BR-3 in-vivo.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shashanka K. Prasad ◽  
Sushma Pradeep ◽  
Chandan Shimavallu ◽  
Shiva Prasad Kollur ◽  
Asad Syed ◽  
...  

Annona muricata, a tropical plant which has been extensively used in ethnomedicine to treat a wide range of diseases, from malaria to cancer. Interestingly, this plant has been reported to demonstrate significant antiviral properties against the human immunodeficiency virus, herpes simplex virus, human papilloma virus, hepatitis C virus and dengue virus. Additionally, the bioactive compounds responsible for antiviral efficacy have also shown to be selectively cytotoxic while inhibiting tumorigenic cell growth without affecting the normal cell growth. Annonaceous Acetogenins are a class of bioactive compounds exclusive to the Annonaceae family at which the plant A. muricata belongs. In the current study, we have created a library of Acetogenins unique to the plant, comprising of Annomuricin A, Annomuricin B, Annomuricin C, Muricatocin C, Muricatacin, cis-Annonacin, Annonacin-10-one, cis-Goniothalamicin, Arianacin and Javoricin, for in silico and theoretical evaluations against the SARS-CoV-2 spike protein in an attempt toward promotion of plant based drug development for the current pandemic of coronavirus disease 2019 (COVID-19). We found that all the Acetogenins showing in silico spike protein significantly docking with good binding affinities. Moreover, we envision A. muricata Acetogenins can be further studied by in vitro and in vivo models to identify potential anti-SARS-CoV-2 agents.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


2019 ◽  
Vol 35 (6) ◽  
pp. 87-90
Author(s):  
S.V. Nikulin ◽  
V.A. Petrov ◽  
D.A. Sakharov

The real-time monitoring of electric capacitance (impedance spectroscopy) allowed obtaining evidence that structures which look like intestinal villi can be formed during the cultivation under static conditions as well as during the cultivation in microfluidic chips. It was shown in this work via transcriptome analysis that the Hh signaling pathway is involved in the formation of villus-like structures in vitro, which was previously shown for their formation in vivo. impedance spectroscopy, intestine, villi, electric capacitance, Hh The study was funded by the Russian Science Foundation (Project 16-19-10597).


Sign in / Sign up

Export Citation Format

Share Document