Synthesis of a tetrasaccharide related to the repeating unit of the O-antigen from Escherichia coli K-12

2009 ◽  
Vol 344 (17) ◽  
pp. 2311-2316 ◽  
Author(s):  
Bimalendu Roy ◽  
Robert A. Field ◽  
Balaram Mukhopadhyay
Keyword(s):  
1994 ◽  
Vol 176 (13) ◽  
pp. 4144-4156 ◽  
Author(s):  
G Stevenson ◽  
B Neal ◽  
D Liu ◽  
M Hobbs ◽  
N H Packer ◽  
...  
Keyword(s):  

2018 ◽  
Vol 201 (4) ◽  
Author(s):  
Connor Sharp ◽  
Christine Boinett ◽  
Amy Cain ◽  
Nicholas G. Housden ◽  
Sandip Kumar ◽  
...  

ABSTRACTThe outer membrane of Gram-negative bacteria presents a significant barrier for molecules entering the cell. Nevertheless, colicins, which are antimicrobial proteins secreted byEscherichia coli, can target otherE. colicells by binding to cell surface receptor proteins and activating their import, resulting in cell death. Previous studies have documented high rates of nonspecific resistance (insensitivity) of variousE. colistrains toward colicins that is independent of colicin-specific immunity and is instead associated with lipopolysaccharide (LPS) in the outer membrane. This observation poses a contradiction: why doE. colistrains have colicin-expressing plasmids, which are energetically costly to retain, if cells around them are likely to be naturally insensitive to the colicin they produce? Here, using a combination of transposon sequencing and phenotypic microarrays, we show that colicin insensitivity of uropathogenicE. colisequence type 131 (ST131) is dependent on the production of its O-antigen but that minor changes in growth conditions render the organism sensitive toward colicins. The reintroduction of O-antigen intoE. coliK-12 demonstrated that it is the density of O-antigen that is the dominant factor governing colicin insensitivity. We also show, by microscopy of fluorescently labelled colicins, that growth conditions affect the degree of occlusion by O-antigen of outer membrane receptors but not the clustered organization of receptors. The result of our study demonstrate that environmental conditions play a critical role in sensitizingE. colitoward colicins and that O-antigen in LPS is central to this role.IMPORTANCEEscherichia coliinfections can be a major health burden, especially with the organism becoming increasingly resistant to “last-resort” antibiotics such as carbapenems. Although colicins are potent narrow-spectrum antimicrobials with potential as future antibiotics, high levels of naturally occurring colicin insensitivity have been documented which could limit their efficacy. We identify O-antigen-dependent colicin insensitivity in a clinically relevant uropathogenicE. colistrain and show that this insensitivity can be circumvented by minor changes to growth conditions. The results of our study suggest that colicin insensitivity amongE. coliorganisms has been greatly overestimated, and as a consequence, colicins could in fact be effective species-specific antimicrobials targeting pathogenicE. colisuch as uropathogenicE. coli(UPEC).


Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1750-1760 ◽  
Author(s):  
Katarzyna A. Duda ◽  
Buko Lindner ◽  
Helmut Brade ◽  
Andreas Leimbach ◽  
Elżbieta Brzuszkiewicz ◽  
...  

Mastitis represents one of the most significant health problems of dairy herds. The two major causative agents of this disease are Escherichia coli and Staphylococcus aureus. Of the first, its lipopolysaccharide (LPS) is thought to play a prominent role during infection. Here, we report the O-antigen (OPS, O-specific polysaccharide) structure of the LPS from bovine mastitis isolate E. coli 1303. The structure was determined utilizing chemical analyses, mass spectrometry, and 1D and 2D NMR spectroscopy methods. The O-repeating unit was characterized as -[→4)-β-d-Quip3NAc-(1→3)-α-l-Fucp2OAc-(1→4)-β-d-Galp-(1→3)-α-d-GalpNAc-(1→]- in which the O-acetyl substitution was non-stoichiometric. The nucleotide sequence of the O-antigen gene cluster of E. coli 1303 was also determined. This cluster, located between the gnd and galF genes, contains 13 putative open reading frames, most of which represent unknown nucleotide sequences that have not been described before. The O-antigen of E. coli 1303 was shown to substitute O-7 of the terminal ld-heptose of the K-12 core oligosaccharide. Interestingly, the non-OPS-substituted core oligosaccharide represented a truncated version of the K-12 outer core – namely terminal ld-heptose and glucose were missing; however, it possessed a third Kdo residue in the inner core. On the basis of structural and genetic data we show that the mastitis isolate E. coli 1303 represents a new serotype and possesses the K-12 core type, which is rather uncommon among human and bovine isolates.


2005 ◽  
Vol 187 (15) ◽  
pp. 5259-5266 ◽  
Author(s):  
Adi Peleg ◽  
Yulia Shifrin ◽  
Ophir Ilan ◽  
Chen Nadler-Yona ◽  
Shani Nov ◽  
...  

ABSTRACT Escherichia coli produces polysaccharide capsules that, based on their mechanisms of synthesis and assembly, have been classified into four groups. The group 4 capsule (G4C) polysaccharide is frequently identical to that of the cognate lipopolysaccharide O side chain and has, therefore, also been termed the O-antigen capsule. The genes involved in the assembly of the group 1, 2, and 3 capsules have been described, but those required for G4C assembly remained obscure. We found that enteropathogenic E. coli (EPEC) produces G4C, and we identified an operon containing seven genes, ymcD, ymcC, ymcB, ymcA, yccZ, etp, and etk, which are required for formation of the capsule. The encoded proteins appear to constitute a polysaccharide secretion system. The G4C operon is absent from the genomes of enteroaggregative E. coli and uropathogenic E. coli. E. coli K-12 contains the G4C operon but does not express it, because of the presence of IS1 at its promoter region. In contrast, EPEC, enterohemorrhagic E. coli, and Shigella species possess an intact G4C operon.


2008 ◽  
Vol 190 (6) ◽  
pp. 2128-2137 ◽  
Author(s):  
Cristina L. Marolda ◽  
Emily R. Haggerty ◽  
Michael Lung ◽  
Miguel A. Valvano

ABSTRACT Wzz is a membrane protein that determines the chain length distribution of the O-antigen lipopolysaccharide by an unknown mechanism. Wzz proteins consist of two transmembrane helices separated by a large periplasmic loop. The periplasmic loop of Escherichia coli K-12 Wzz (244 amino acids from K65 to A308) was purified and found to be a monomer with an extended conformation, as determined by gel filtration chromatography and analytical ultracentrifugation. Circular dichroism showed that the loop has a 60% helical content. The Wzz periplasmic loop also contains three regions with predicted coiled coils. To probe the function of the predicted coiled coils, we constructed amino acid replacement mutants of the E. coli K-12 Wzz protein, which were designed so that the coiled coils could be separate without compromising the helicity of the individual molecules. Mutations in one of the regions, spanning amino acids 108 to 130 (region I), were associated with a partial defect in O-antigen chain length distribution, while mutants with mutations in the region spanning amino acids 209 to 223 (region III) did not have an apparent functional defect. In contrast, mutations in the region spanning amino acids 153 to 173 (region II) eliminated the Wzz function. This phenotype was associated with protein instability, most likely due to conformational changes caused by the amino acid replacements, which was confirmed by limited trypsin proteolysis. Additional mutagenesis based on a three-dimensional model of region I demonstrated that the amino acids implicated in function are all located at the same face of a predicted α-helix, suggesting that a coiled coil actually does not exist in this region. Together, our results suggest that the regions predicted to be coiled coils are important for Wzz function because they maintain the native conformation of the protein, although the existence of coiled coils could not be demonstrated experimentally.


Genetics ◽  
1994 ◽  
Vol 138 (1) ◽  
pp. 7-10 ◽  
Author(s):  
D Liu ◽  
P R Reeves

Abstract Escherichia coli strains ECOR2, ECOR3 and K-12 are very closely related in genotype as indicated by multilocus enzyme electrophoresis. We show that they have very different rfb regions indicating that recombination has occurred in this region, and we suggest that it may be associated with niche adaptation.


Sign in / Sign up

Export Citation Format

Share Document