Substrate ionization energy influences the epoxidation of m-substituted styrenes catalyzed by chloroperoxidase from Caldariomyces fumago

2016 ◽  
Vol 77 ◽  
pp. 52-54 ◽  
Author(s):  
Fabio A. Muñoz-Guerrero ◽  
Sergio Águila ◽  
Rafael Vazquez-Duhalt ◽  
Cristian H. Campos ◽  
Cecilia C. Torres ◽  
...  
2020 ◽  
Vol 39 (1) ◽  
pp. 297-303
Author(s):  
Toru Akasofu ◽  
Masanobu Kusakabe ◽  
Shigeru Tamaki

AbstractThe bonding character of liquid lead telluride \text{PbTe} is thermodynamically investigated in detail. Its possibility as an ionic melt composed of cation {\text{Pb}}^{2+} and anion {\text{Te}}^{2-} is not acceptable, by comparing the ionization energy of \text{Pb} atom, electron affinity of \text{Te} atom and the ionic bonding energy due to the cation {\text{Pb}}^{2+} and anion {\text{Te}}^{2-} with the help of structural information. Solid lead telluride PbTe as a narrow band gap semiconductor might yield easily the overlapping of the tail of valence band and that of conduction one. And on melting, it becomes to an ill-conditioned metallic state, which concept is supported by the electrical behaviors of liquid Pb–Te alloys observed by the present authors. As structural information tells us about the partial remain of some sorts of covalent-type mono-dipole and poly-dipole of the molecule \text{PbTe}, all systems are thermodynamically explained in terms of a mixture of these molecules and cations {\text{Pb}}^{4+} and {\text{Te}}^{2+} and a small amount of the conduction electrons are set free from these elements based on the ternary solution model.


1967 ◽  
Vol 45 (1) ◽  
pp. 119-126 ◽  
Author(s):  
J. Basinski ◽  
R. Olivier

Hall effect and resistivity measurements have been made in the temperature range 4.2–360 °K on several samples of n-type GaAs grown under oxygen atmosphere and without any other intentional dopings. The principal shallow donor in this material is considered to be Si. All samples exhibited impurity-band conduction at low temperature. Electron concentrations in the conduction band were calculated, using a two-band model, and then fitted to the usual equation expressing charge neutrality. A value of 2.3 × 10−3 eV was obtained for the ionization energy of the donors, for donor concentration ranging from 5 × 1015 cm−3 to 2 × 1016 cm−3. The conduction in the impurity band was of the hopping type for these concentrations. A value of 3.5 × 1016 cm−3 was obtained for the critical transition concentration of the impurity-band conduction to the metallic type.


1987 ◽  
Vol 42 (9) ◽  
pp. 943-947
Author(s):  
I. Agil ◽  
A. Alharkan ◽  
H . Alhendi ◽  
A. Alnaghmoosh

It is shown that leading corrections, to the ionization energy, of many-electrons atom, can be expressed as leading corrections of initial slope of trial variational solutions of the Thomas-Fermi equation. Some variational solutions with different initial slopes are compared. A comparison of the results shows, that as far as the binding energies are concerned a trial function with its slope not close to the (negative) Baker’s constant may not be suited.


1999 ◽  
Vol 103 (7) ◽  
pp. 812-815 ◽  
Author(s):  
R. Peyton Thorn ◽  
Louis J. Stief ◽  
Szu-Cherng Kuo ◽  
R. Bruce Klemm

2016 ◽  
Vol 30 (20) ◽  
pp. 1650257
Author(s):  
Meng Zhao ◽  
Wenjun Wang ◽  
Jun Wang ◽  
Junwei Yang ◽  
Weijie Hu ◽  
...  

Various Be:O-codoped AlN crystals have been investigated via first-principles calculations to evaluate the role of the different combinations in effectively and efficiently inducing p-type carriers. It is found that the O atom is favored to bond with two Be atoms. The formed Be2:O complexes decrease the acceptor ionization energy to 0.11 eV, which is 0.16 eV lower than that of an isolated Be in AlN, implying that the hole concentration could probably be increased by 2–3 orders of magnitude. The electronic structure of Be2:O-codoped AlN shows that the lower ionization energy can be attributed to the interaction between Be and O. The Be–O complexes, despite failing to induce p-type carriers for the mutual compensation of Be and O, introduce new occupied states on the valence-band maximum (VBM) and hence the energy needed for the transition of electrons to the acceptor level is reduced. Thus, the Be2:O codoping method is expected to be an effective and efficient approach to realizing p-type AlN.


Sign in / Sign up

Export Citation Format

Share Document