A model of how the thermal ionization energy of impurities in semiconductors depends on their concentration and compensation

1999 ◽  
Vol 33 (4) ◽  
pp. 402-406 ◽  
Author(s):  
N. A. Poklonskii ◽  
A. I. Syaglo ◽  
G. Biskupski
1983 ◽  
Vol 30 (2) ◽  
pp. 105-107 ◽  
Author(s):  
M. Godlewski ◽  
H. Przybylińska ◽  
J. M. Langer

2009 ◽  
Vol 1164 ◽  
Author(s):  
Raji Soundararajan ◽  
Kelly A. Jones ◽  
Santosh Swain ◽  
Kelvin Lynn

AbstractConsidering the desirable effects of doping CdTe with heavy elements like Bi, we have grown a Cadmium Zinc Telluride (Zn=10%) ingot with Bi (doping levels ∼1014 to 1015 at/cm3) as the heavy element dopant for use as a room temperature radiation detector, using the Bridgman method. In-spite of a high bulk resitivity (∼1010?cm), and the ability to hold high electric field (>2000 V/cm), these lightly doped crystals had a poor spectral resolution for the Co-57 photo peaks and ??e measurements were so low that these measurement were not reliable. Thermo electric effect spectroscopy (TEES) and thermally stimulated current (TSC) experiments on samples C and F (single crystals close to the tip and the heel of the ingot respectively) have revealed various defect levels in the band gap. Among these defect levels, we have identified and characterized two Bi-related deep levels namely a deep donor level L5 (thermal ionization energy: 0.33[5] to 0.39[5] eV and trap cross-section: 7.1[5] × 10-17 to 2.54 [5] × 10-16 cm2), and a deep acceptor level L8 (thermal ionization energy of 0.82 [5] eV and trap cross-section of 2.59 [5] × 10-12 cm2). These levels were responsible for the observed high electrical resistivity (∼1010 ?*cm) in the CdZnTe samples. From a comparison to studies on Bi doped CdTe samples, level L8 was tentatively associated with the (0/-) transition of (BiCd- - OTe) complex, however is still under study. Since these defect levels also act as trapping centers for charge carriers, in spite of the semi-insulating behavior the samples are poor radiation detectors.


1998 ◽  
Vol 189-190 ◽  
pp. 528-531 ◽  
Author(s):  
Maki Katsuragawa ◽  
Shigetoshi Sota ◽  
Miho Komori ◽  
Chitoshi Anbe ◽  
Tetsuya Takeuchi ◽  
...  

Author(s):  
Nikolai A. Poklonski ◽  
Sergey A. Vyrko ◽  
Aliaksandr N. Dzeraviaha

In the work the dependence of the thermal ionization energy of hydrogen-like donors and acceptors on their concentration in n- and p-type semiconductors is analyzed analytically and numerically. The impurity concentrations and temperatures at which the semiconductors are on the insulator side of the concentration insulator – metal phase transition (Mott transition) are considered. It is assumed that impurities in the crystal are distributed randomly (according to Poisson), and their energy levels are distributed normally (according to Gauss). In the quasi-classical approximation, it is shown, for the first time, that the decrease in the ionization energy of impurities mainly occurs due to the joint manifestation of two reasons. Firstly, from the excited states of electrically neutral impurities, a quasicontinuous band of allowed energy values is formed for c-band electrons in an n-type crystal (or for v-band holes in a p-type crystal). This reduces the energy required for the thermally activated transition of electron from the donor to the c-band (for the transition of the hole from the acceptor to the v-band). Secondly, from the ground (unexcited) states of impurities a classical impurity band is formed, the width of which at low temperatures is determined only by the concentration of impurity ions. In moderately compensated semiconductors (when the ratio of the concentration of minority impurities to the concentration of majority impurities is less than 50 %) the Fermi level is located closer to the edge of the band of allowed energy values than the middle of the impurity band, that issue reduces thermal ionization energy of impurities from states in the vicinity of the Fermi level (transition of electron from a donor to the c-band, or hole from an acceptor to the v-band). Previously, these two causes of decrease in the thermal ionization energy due to increase in the concentration of impurities were considered separately. The results of calculations according to the proposed formulas are quantitatively agree with the known experimental data for a number of semiconductor materials (germanium, silicon, diamond, gallium arsenide and phosphide, silicon carbide, zinc selenide) with a moderate compensation ratio.


Sign in / Sign up

Export Citation Format

Share Document