Measuring sediment transport capacity in ephemeral gully through adjustment of sediment feeding

CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105261
Author(s):  
Yuhan Huang ◽  
Xiaohui Zhuang ◽  
Wei Wang ◽  
Tingwu Lei ◽  
Zhiqiang Liu ◽  
...  
Author(s):  
E. J. Langendoen ◽  
R. R. Wells ◽  
M. E. Ursic ◽  
D. A. N. Vieira ◽  
S. M. Dabney

Abstract. On cropland, ephemeral gully erosion in the USA may contribute up to 40% of the sediment delivered to the edge of the field. Well-tested, physically- and process-based tools for field and watershed scale prediction of gully erosion are lacking due to the fact that the complex nature of migrating headcuts is poorly understood. Understanding sediment transport capacity downstream of migrating headcuts is essential, as sediment deposition often leads to temporary storage that controls downstream water elevation, which in turn affects the rate of headcut migration. Current process-based gully erosion prediction technology used by the Agricultural Research Service (ARS) is based on characterizing the headcut migration rate, which requires the deposition depth as input to the model. Alternatively, the deposition depth can be calculated if downstream sediment transport capacity can be predicted. Data collected at the ARS-National Sedimentation Laboratory were used to test existing sediment transport relationships for the five sediment size classes (clay, silt, sand, small aggregates, large aggregates) typically used in ARS soil erosion models. The results show that the transport rate can be satisfactorily predicted for sand and large aggregate size fractions using common transport relationships based on unit stream power theory. The fractional content of the sand and large aggregate size classes can be computed using standard relationships, which are based on soil texture, previously developed by ARS. The transport of clays, silts and small aggregates is detachment limited and must therefore be computed using improved soil detachment relationships for ephemeral gullies.


Geoderma ◽  
2019 ◽  
Vol 337 ◽  
pp. 384-393 ◽  
Author(s):  
Hongli Mu ◽  
Xianju Yu ◽  
Suhua Fu ◽  
Bofu Yu ◽  
Yingna Liu ◽  
...  

2012 ◽  
Vol 16 (2) ◽  
pp. 591-601 ◽  
Author(s):  
M. Ali ◽  
G. Sterk ◽  
M. Seeger ◽  
M. Boersema ◽  
P. Peters

Abstract. Sediment transport is an important component of the soil erosion process, which depends on several hydraulic parameters like unit discharge, mean flow velocity, and slope gradient. In most of the previous studies, the impact of these hydraulic parameters on transport capacity was studied for non-erodible bed conditions. Hence, this study aimed to examine the influence of unit discharge, mean flow velocity and slope gradient on sediment transport capacity for erodible beds and also to investigate the relationship between transport capacity and composite force predictors, i.e. shear stress, stream power, unit stream power and effective stream power. In order to accomplish the objectives, experiments were carried out in a 3.0 m long and 0.5 m wide flume using four well sorted sands (0.230, 0.536, 0.719, 1.022 mm). Unit discharges ranging from 0.07 to 2.07 × 10−3 m2 s−1 were simulated inside the flume at four slopes (5.2, 8.7, 13.2 and 17.6%) to analyze their impact on sediment transport rate. The sediment transport rate measured at the bottom end of the flume by taking water and sediment samples was considered equal to sediment transport capacity, because the selected flume length of 3.0 m was found sufficient to reach the transport capacity. The experimental result reveals that the slope gradient has a stronger impact on transport capacity than unit discharge and mean flow velocity due to the fact that the tangential component of gravity force increases with slope gradient. Our results show that unit stream power is an optimal composite force predictor for estimating transport capacity. Stream power and effective stream power can also be successfully related to the transport capacity, however the relations are strongly dependent on grain size. Shear stress showed poor performance, because part of shear stress is dissipated by bed irregularities, bed form evolution and sediment detachment. An empirical transport capacity equation was derived, which illustrates that transport capacity can be predicted from median grain size, total discharge and slope gradient.


1989 ◽  
Vol 32 (5) ◽  
pp. 1545-1550 ◽  
Author(s):  
S. C. Finkner ◽  
M. A. Hearing ◽  
G. R. Foster ◽  
J. E. Gilley

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hai Xiao ◽  
Gang Liu ◽  
Puling Liu ◽  
Fenli Zheng ◽  
Jiaqiong Zhang ◽  
...  

2020 ◽  
Vol 591 ◽  
pp. 125582
Author(s):  
Shuyuan Wang ◽  
Dennis C. Flanagan ◽  
Bernard A. Engel ◽  
Na Zhou

Sign in / Sign up

Export Citation Format

Share Document