overland flows
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jean-Raynald De Dreuzy ◽  
Alexandre Gauvain ◽  
Sarah Leray ◽  
Jean Marçais ◽  
Clément Roques ◽  
...  

<p>We investigate how geomorphological structures shape Transit Time Distributions (TTDs) in shallow aquifers. We show that the TTD is determined by integrated features of the groundwater structure and of the repartition of seepage in convergent/divergent hillslopes of constant slope. More specifically, the coefficient of variation of the TTD (standard deviation divided by the mean) scales linearly with the mean distance of the groundwater volume to the river. The extent and structure of seepage modify the groundwater contribution to the transit time distribution and increase its variability.</p><p>Extensive 3D simulations were performed to determine the TTDs synthetic convergent, straight and divergent hillslope models of constant slope. The recharge was applied uniformly on top of the aquifer and transferred to the receiving stream through steady-state groundwater flows, return flows and saturation excess overland flows. Without seepage, TTDs evolve from uniform- to power law-like- distributions depending on the average distance of the groundwater volume to the river. Remarkably, the coefficient of variation of the TTDs scales linearly with the groundwater volume to the river at any hillslope convergent/divergent rate in agreement with a theoretical prediction based on three analytical approximations. With seepage, the TTD progressively displays three separate modes corresponding (1) to the rapid saturation excess overland flows, (2) to the intermediary circulations ending up in seepage area and (3) to the slower circulations going from a recharge upstream the seepage zone to a discharge in the river. The coefficient of variation additionally depends on the extent of the seepage area.</p><p>Applied to a natural hillslope in the crystalline basement of Normandy (France), the same synthetic analysis demonstrates that the coefficient of variation is not only determined by the extent of the seepage zone but also by its structure in relation to the geomorphological local and global organizations. These results suggest the possibility to assess the variability of transit times by combining geomorphological analysis, surface soil saturation observations and environmental tracers.</p>


2020 ◽  
Vol 26 (1) ◽  
pp. 1
Author(s):  
Mehmet Ersoy ◽  
Omar Lakkis ◽  
Philip Townsend

We propose a one-dimensional Saint-Venant (open-channel) model for overland flows, including a water input–output source term modeling recharge via rainfall and infiltration (or exfiltration). We derive the model via asymptotic reduction from the two-dimensional Navier–Stokes equations under the shallow water assumption, with boundary conditions including recharge via ground infiltration and runoff. This new model recovers existing models as special cases, and adds more scope by adding water-mixing friction terms that depend on the rate of water recharge. We propose a novel entropy function and its flux, which are useful in validating the model’s conservation or dissipation properties. Based on this entropy function, we propose a finite volume scheme extending a class of kinetic schemes and provide numerical comparisons with respect to the newly introduced mixing friction coefficient. We also provide a comparison with experimental data.


Author(s):  
Dayeon Lee ◽  
Sungwon Shin ◽  
Hyoungsu Park ◽  
Dan Cox

Low lying coastal communities are most vulnerable to the flooding which causes from sea-level rise (SLR), and extreme coastal flooding events such as hurricanes and tsunami. Notably, the high elevation of sea-levels due to SLR and local tidal conditions could accelerate the damages on the coastal communities. Hard coastal structures such as a submerged breakwater and seawall would consider minimizing the impacts of overland flows to the urban area from the extreme coastal events, but the effectiveness of those hard structures are significantly alter depending on the various waves and sea-level conditions.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/GCOOpB4C3tA


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 594 ◽  
Author(s):  
Guijing Li ◽  
Matteo Rubinato ◽  
Long Wan ◽  
Bin Wu ◽  
Jiufu Luo ◽  
...  

Karst regions are widely distributed in Southwest China and due to the complexity of their geologic structure, it is very challenging to collect data useful to provide a better understanding of surface, underground and fissure flows, needed to calibrate and validate numerical models. Without characterizing these features, it is very problematic to fully establish rainfall–runoff processes associated with soil loss in karst landscapes. Water infiltrated rapidly to the underground in rocky desertification areas. To fill this gap, this experimental work was completed to preliminarily determine the output characteristics of subsurface and underground fissure flows and their relationships with rainfall intensities (30 mm h−1, 60 mm h−1 and 90 mm h−1) and bedrock degrees (30%, 40% and 50%), as well as the role of underground fissure flow in the near-surface rainfall–runoff process. Results indicated that under light rainfall conditions (30 mm h−1), the hydrological processes observed were typical of Dunne overland flows; however, under moderate (60 mm h−1) and high rainfall conditions (90 mm h−1), hydrological processes were typical of Horton overland flows. Furthermore, results confirmed that the generation of underground runoff for moderate rocky desertification (MRD) and severe rocky desertification (SRD) happened 18.18% and 45.45% later than the timing recorded for the light rocky desertification (LRD) scenario. Additionally, results established that the maximum rate of underground runoff increased with the increase of bedrock degrees and the amount of cumulative underground runoff measured under different rocky desertification was SRD > MRD > LRD. In terms of flow characterization, for the LRD configuration under light rainfall intensity the underground runoff was mainly associated with soil water, which was accounting for about 85%–95%. However, under moderate and high rainfall intensities, the underground flow was mainly generated from fissure flow.


2019 ◽  
Author(s):  
Yohei Sawada

Abstract. It is expected that hyperresolution land modeling substantially innovates the simulation of terrestrial water, energy, and carbon cycles. The major advantage of hyperresolution land models against conventional one-dimensional land surface models is that hyperresolution land models can explicitly simulatelateral water flows. Despite many efforts on data assimilation of hydrological observations into those hyperresolution land models, how and when surface water flows driven by local topography matter for data assimilation of soil moisture observations has not been fully clarified. Here I perform two minimalist synthetic experiments where soil moisture observations are assimilated into an integrated surface-groundwater land model by an ensemble Kalman filter. A horizontal background error covariance provided by overland flows is important to adjust the unobserved state and parameter variables. However, the non-Gaussianity of the background error provided by the nonlinearity of a topography-driven surface flow harms the performance of data assimilation. It is difficult to efficiently constrain model states at the edge of the area where the topography-driven surface flow reaches by linear-Gaussian filters, which brings the new challenge in land data assimilation for hyperresolution land models. This study highlights the importance of surface lateral flows in hydrological data assimilation.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1732 ◽  
Author(s):  
Alex Curran ◽  
Karin de Bruijn ◽  
Wouter Klerk ◽  
Matthijs Kok

To make informed flood risk management (FRM) decisions in large protected river systems, flood risk and hazard analyses should include the potential for dike breaching. ‘Load interdependency’ analyses attempt to include the system-wide effects of dike breaching while accounting for the uncertainty of both river loads and dike fragility. The intensive stochastic computation required for these analyses often precludes the use of complex hydraulic models, but simpler models may miss spatial inundation interactions such as flows that ‘cascade’ between compartmentalised regions and overland flows that ‘shortcut’ between river branches. The potential for these interactions in the Netherlands has previously been identified, and so a schematisation of the Dutch floodplain and protection system is here developed for use in a load interdependency analysis. The approach allows for the spatial distribution of hazard to be quantified under various scenarios and return periods. The results demonstrate the importance of including spatial inundation interactions on hazard estimation at three specific locations, and for the system in general. The modelling approach can be used at a local scale to focus flood-risk analysis and management on the relevant causes of inundation, and at a system-wide scale to estimate the overall impact of large-scale measures.


Geoderma ◽  
2019 ◽  
Vol 337 ◽  
pp. 384-393 ◽  
Author(s):  
Hongli Mu ◽  
Xianju Yu ◽  
Suhua Fu ◽  
Bofu Yu ◽  
Yingna Liu ◽  
...  

2019 ◽  
Vol 09 (04) ◽  
pp. 334-345
Author(s):  
Theodore V. Hromadka II ◽  
Prasada Rao

Geosciences ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 450 ◽  
Author(s):  
Timu Gallien ◽  
Nikos Kalligeris ◽  
Marie-Pierre Delisle ◽  
Bo-Xiang Tang ◽  
Joseph Lucey ◽  
...  

Coastal flooding is a significant and increasing hazard. There are multiple drivers including rising coastal water levels, more intense hydrologic inputs, shoaling groundwater and urbanization. Accurate coastal flood event prediction poses numerous challenges: representing boundary conditions, depicting terrain and hydraulic infrastructure, integrating spatially and temporally variable overtopping flows, routing overland flows and incorporating hydrologic signals. Tremendous advances in geospatial data quality, numerical modeling and overtopping estimation have significantly improved flood prediction; however, risk assessments do not typically consider the co-occurrence of multiple flooding pathways. Compound flooding refers to the combined effects of marine and hydrologic processes. Alternatively, multiple flooding source–receptor pathways (e.g., groundwater–surface water, overtopping–overflow, surface–sewer flow) may simultaneously amplify coastal hazard and vulnerability. Currently, there is no integrated framework considering compound and multi-pathway flooding processes in a unified approach. State-of-the-art urban coastal flood modeling methods and research directions critical to developing an integrated framework for explicitly resolving multiple flooding pathways are presented.


Sign in / Sign up

Export Citation Format

Share Document