A meta-analysis of film mulching cultivation effects on soil organic carbon and soil greenhouse gas fluxes

CATENA ◽  
2021 ◽  
Vol 206 ◽  
pp. 105483
Author(s):  
Yongxiang Yu ◽  
Yanxia Zhang ◽  
Mao Xiao ◽  
Chengyi Zhao ◽  
Huaiying Yao
2014 ◽  
Vol 11 (6) ◽  
pp. 1649-1666 ◽  
Author(s):  
X. P. Liu ◽  
W. J. Zhang ◽  
C. S. Hu ◽  
X. G. Tang

Abstract. The objectives of this study were to investigate seasonal variation of greenhouse gas fluxes from soils on sites dominated by plantation (Robinia pseudoacacia, Punica granatum, and Ziziphus jujube) and natural regenerated forests (Vitex negundo var. heterophylla, Leptodermis oblonga, and Bothriochloa ischcemum), and to identify how tree species, litter exclusion, and soil properties (soil temperature, soil moisture, soil organic carbon, total N, soil bulk density, and soil pH) explained the temporal and spatial variation in soil greenhouse gas fluxes. Fluxes of greenhouse gases were measured using static chamber and gas chromatography techniques. Six static chambers were randomly installed in each tree species. Three chambers were randomly designated to measure the impacts of surface litter exclusion, and the remaining three were used as a control. Field measurements were conducted biweekly from May 2010 to April 2012. Soil CO2 emissions from all tree species were significantly affected by soil temperature, soil moisture, and their interaction. Driven by the seasonality of temperature and precipitation, soil CO2 emissions demonstrated a clear seasonal pattern, with fluxes significantly higher during the rainy season than during the dry season. Soil CH4 and N2O fluxes were not significantly correlated with soil temperature, soil moisture, or their interaction, and no significant seasonal differences were detected. Soil organic carbon and total N were significantly positively correlated with CO2 and N2O fluxes. Soil bulk density was significantly negatively correlated with CO2 and N2O fluxes. Soil pH was not correlated with CO2 and N2O emissions. Soil CH4 fluxes did not display pronounced dependency on soil organic carbon, total N, soil bulk density, and soil pH. Removal of surface litter significantly decreased in CO2 emissions and CH4 uptakes. Soils in six tree species acted as sinks for atmospheric CH4. With the exception of Ziziphus jujube, soils in all tree species acted as sinks for atmospheric N2O. Tree species had a significant effect on CO2 and N2O releases but not on CH4 uptake. The lower net global warming potential in natural regenerated vegetation suggested that natural regenerated vegetation were more desirable plant species in reducing global warming.


2013 ◽  
Vol 10 (7) ◽  
pp. 11037-11076 ◽  
Author(s):  
X. P. Liu ◽  
W. J. Zhang ◽  
C. S. Hu ◽  
X. G. Tang

Abstract. The objectives of this study were to investigate seasonal variation of greenhouse gas fluxes from soils on sites dominated by plantation (Robinia pseudoacacia, Punica granatum, and Ziziphus jujube) and natural regenerated forests (Vitex negundo var. heterophylla, Leptodermis oblonga, and Bothriochloa ischcemum), and to identify how tree species, litter exclusion, and soil properties (soil temperature, soil moisture, soil organic carbon, total N, soil bulk density, and soil pH) explained the temporal and spatial variance in soil greenhouse gas fluxes. Fluxes of greenhouse gases were measured using static chamber and gas chromatography techniques. Six static chambers were randomly installed in each tree species. Three chambers were randomly designated to measure the impacts of surface litter exclusion, and the remaining three were used as a control. Field measurements were conducted biweekly from May 2010 through April 2012. Soil CO2 emissions from all tree species were significantly affected by soil temperature, soil moisture, and their interaction. Driven by the seasonality of temperature and precipitation, soil CO2 emissions demonstrated a clear seasonal pattern, with fluxes significantly higher during the rainy season than during the dry season. Soil CH4 and N2O fluxes were not significantly correlated with soil temperature, soil moisture, or their interaction, and no significant seasonal differences were detected. Soil CO2 and N2O fluxes were significantly correlated with soil organic carbon, total N, and soil bulk density, while soil pH was not correlated with CO2 and N2O emissions. Soil CH4 fluxes did not display pronounced dependency on soil organic carbon, total N, soil bulk density, and soil pH. Removal of surface litter resulted in significant decreases in CO2 emissions and CH4 uptakes, but had no significant influence on N2O fluxes. Soils in six tree species acted as sinks for atmospheric CH4. With the exception of Ziziphus jujube, Soils in all sites acted as sinks for atmospheric N2O. Tree species had a significant effect on CO2 and N2O fluxes but not on CH4 uptake. The lower net global warming potential in natural regenerated vegetation suggested that natural regenerated vegetation were more desirable plant species in reducing global warming.


GCB Bioenergy ◽  
2016 ◽  
Vol 9 (4) ◽  
pp. 743-755 ◽  
Author(s):  
Yanghui He ◽  
Xuhui Zhou ◽  
Liling Jiang ◽  
Ming Li ◽  
Zhenggang Du ◽  
...  

2013 ◽  
Vol 152 (4) ◽  
pp. 534-542 ◽  
Author(s):  
Z. LI ◽  
R. ZHANG ◽  
X. WANG ◽  
F. CHEN ◽  
D. LAI ◽  
...  

SUMMARYTo evaluate the effects of a modern cultivation system of plastic film mulching with drip irrigation (MD) on soil greenhouse gas fluxes, methane (CH4) and nitrous oxide (N2O) fluxes were quantified and contrasted in an MD system and a traditional system of mulch-free flood-irrigated (MFF) cotton (Gossypium hirsutum L.) in fields of northwest China. The results showed that soil N2O flux and the absorption rate of CH4 were lower in the MD than the MFF sites. A possible reason for the higher CH4 emissions at MD sites was that the relatively low gaseous oxygen (O2) availability and high ammonium (NH4+) content in the MD soil increased CH4 generation by methanogens and decreased CH4 oxidation by methanotrophs. The lower N2O in the MD sites may be due to an increase of soil denitrification by Thiobacillus denitrificans that reduced some nitrous compounds further into nitrogen gas (N2). Taking into account the global warming potentials of CH4 and N2O in a 100-year time horizon, during the entire growth period, the contribution of CH4 to the greenhouse effect was significantly lower than N2O in these two treatments. Considering these two greenhouse gas fluxes together, a transition from non-mulching cultivation to mulching cultivation could reduce atmospheric emissions by c. 20 g CO2 e m2/season. Based on these findings and previous studies, it can be concluded that mulched-drip irrigation cultivation is a good way to decrease the emission of greenhouse gases and reduce the global warming impact of arid farmlands.


2014 ◽  
Vol 468-469 ◽  
pp. 553-563 ◽  
Author(s):  
Colin Skinner ◽  
Andreas Gattinger ◽  
Adrian Muller ◽  
Paul Mäder ◽  
Andreas Flieβbach ◽  
...  

2019 ◽  
Vol 654 ◽  
pp. 1218-1224 ◽  
Author(s):  
Shiming Tang ◽  
Kun Wang ◽  
Yangzhou Xiang ◽  
Dashuan Tian ◽  
Jinsong Wang ◽  
...  

2021 ◽  
Author(s):  
David Emde ◽  
Kirsten Hannam ◽  
Ilka Most ◽  
Louise Nelson ◽  
Melanie Jones

2021 ◽  
Vol 288 ◽  
pp. 112391
Author(s):  
Yanli Wang ◽  
Pengnian Wu ◽  
Fujian Mei ◽  
Yue Ling ◽  
Yibo Qiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document