species mixture
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 46)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Lorena Lanthemann ◽  
Sofia van Moorsel

Duckweeds (Lemnaceae) are increasingly studied for their potential for phytoremediation of heavy-metal polluted water bodies. A prerequisite for metal removal, however, is the tolerance of the organism to the pollutant, e.g., the metal zinc (Zn). Duckweeds have been shown to differ in their tolerances to Zn, however, despite them most commonly co-occurring with other species, there is a lack of research concerning the effect of species interactions on Zn tolerance. Here we tested whether the presence of a second species influenced the growth rate of the three duckweed species Lemna minor, Lemna gibba, and Lemna turionifera. We used four different Zn concentrations in a replicated microcosm experiment under sterile conditions, either growing the species in isolation or in a 2-species mixture. The response to Zn differed between species, but all three species showed a high tolerance to Zn, with low levels of Zn even increasing the growth rates. The growth rates of the individual species were influenced by the identity of the competing species, but this was independent of the Zn concentration. Our results suggest that species interactions should be considered in future research with duckweeds and that several duckweed species have high tolerance to metal pollution, making them candidates for phytoremediation efforts.


2021 ◽  
pp. 223-262
Author(s):  
Michal Bosela ◽  
Katarína Merganičová ◽  
Chiara Torresan ◽  
Paolo Cherubini ◽  
Marek Fabrika ◽  
...  

AbstractModels to predict the effects of different silvicultural treatments on future forest development are the best available tools to demonstrate and test possible climate-smart pathways of mountain forestry. This chapter reviews the state of the art in modelling approaches to predict the future growth of European mountain forests under changing environmental and management conditions. Growth models, both mechanistic and empirical, which are currently available to predict forest growth are reviewed. The chapter also discusses the potential of integrating the effects of genetic origin, species mixture and new silvicultural prescriptions on biomass production into the growth models. The potential of growth simulations to quantify indicators of climate-smart forestry (CSF) is evaluated as well. We conclude that available forest growth models largely differ from each other in many ways, and so they provide a large range of future growth estimates. However, the fast development of computing capacity allows and will allow a wide range of growth simulations and multi-model averaging to produce robust estimates. Still, great attention is required to evaluate the performance of the models. Remote sensing measurements will allow the use of growth models across ecological gradients.


Author(s):  
Michelle Dobbratz ◽  
Jessica Gutknecht ◽  
Donald Wyse ◽  
Craig C. Sheaffer ◽  
Jacob M. Jungers

Abstract Positive relationships between plant species diversity, soil microbial function and nutrient cycling have been well documented in natural systems, and these relationships have the potential to improve the production and sustainability of agroecosystems. Our objectives were to study the long-term effects of planted species composition and nitrogen (N) fertilization on soil microbial biomass C, extracellular enzyme activity, changes in total soil C, soil fertility and aboveground biomass yield in mixtures of native prairie species managed with and without N fertilizer for bioenergy production at four sites in Minnesota (MN), USA. Species were sown into mixture treatments and composition was not maintained (i.e., no weeding) throughout the duration of the study. Species mixture treatments at establishment included a switchgrass (Panicum virgatum L.) monoculture (SG), a four-species grass mixture (GM), an eight-species legume/grass mixture (LG) and a 24-species high diversity forb/legume/grass mixture (HD). Species diversity and aboveground productivity were similar for most mixture treatments at final sampling after 11 or 12 years of succession. Despite this homogenization of productivity and diversity throughout the study, the effects of planted species diversity and a decade of succession resulted in some differences in soil variables across species mixture treatments. On a peat soil in Roseau, MN, soil enzyme activities including β-glucosidase (BG), cellobiohydrolase (CBH) and phosphatase (PHOS) were highest in HD compared to GM treatments. On a sandy soil at Becker, MN, total soil C increased in all treatment combinations at the 0–15 and 15–30 cm depth intervals, with SG showing greater increases than HD at the 15–30 cm depth. Final soil pH also varied by species mixture at the Becker and Roseau sites, but differences in treatment comparisons varied by location. Nitrogen fertilization did not affect any response variable alone, but interacted with species mixture treatment to influence PHOS and total soil C at Becker. The inconsistent effects of species mixture and N fertilization on soil biological and chemical properties observed across sites highlight the importance of local soil and climate conditions on bioenergy and ecosystem service provisioning of perennial bioenergy cropping systems.


2021 ◽  
Author(s):  
Margaux Didion‐Gency ◽  
Christoph Bachofen ◽  
Nina Buchmann ◽  
Arthur Gessler ◽  
Xavier Morin ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinli Chen ◽  
Han Y. H. Chen

AbstractPlant and soil C:N:P ratios are of critical importance to productivity, food-web dynamics, and nutrient cycling in terrestrial ecosystems worldwide. Plant diversity continues to decline globally; however, its influence on terrestrial C:N:P ratios remains uncertain. By conducting a global meta-analysis of 2049 paired observations in plant species mixtures and monocultures from 169 sites, we show that, on average across all observations, the C:N:P ratios of plants, soils, soil microbial biomass and enzymes did not respond to species mixture nor to the species richness in mixtures. However, the mixture effect on soil microbial biomass C:N changed from positive to negative, and those on soil enzyme C:N and C:P shifted from negative to positive with increasing functional diversity in mixtures. Importantly, species mixture increased the C:N, C:P, N:P ratios of plants and soils when background soil C:N, C:P, and N:P were low, but decreased them when the respective background ratios were high. Our results demonstrate that plant mixtures can balance terrestrial plant and soil C:N:P ratios dependent on background soil C:N:P. Our findings highlight that plant diversity conservation does not only increase plant productivity, but also optimizes ecosystem stoichiometry for the diversity and productivity of today’s and future vegetation.


2021 ◽  
Author(s):  
Chunjie Li ◽  
Haigang Li ◽  
Ellis Hoffland ◽  
Fusuo Zhang ◽  
Junling Zhang ◽  
...  

Abstract Aim Cereal/legume intercropping is known to increase yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of common mycorrhizal networks (CMNs) in overyielding by the crop species mixture and to find out if the effect of a CMN depends on which of the two species was colonized by AM fungi.Methods Microcosms with two compartments were used, separated by a 30-μm nylon mesh. Both compartments contained either chickpea or millet, in monoculture or mixed. One or none of the two compartments was inoculated with the AMF species Funneliformis mosseae. The plant in the inoculated compartment was referred to as the AMF donor, and the plant in the neighboring, non-inoculated compartment as the AMF receiver. Results Inoculation in one compartment resulted in mycorrhiza formation in the other compartment, providing evidence for the formation of CMNs. Inoculation of chickpea in the mixture increased N and P acquisition and biomass of both chickpea (AMF donor) and millet (AMF receiver), whereas inoculation of millet increased biomass of chickpea (AMF receiver) only, but did not increase N or P acquisition by any of the two species. Chickpea as AMF donor had higher numbers of phosphate-solubilizing bacteria in its rhizosphere compared to chickpea as receiver. The shoot N:P ratio of chickpea as AMF donor was lower than as receiver. Conclusion Our study demonstrated asymmetry in nutrient gains by a mixture of cereal and a legume, dependent on which plant species was the AMF donor or receiver. This suggests that initiating mycorrhizal networks by legumes in intercropping could be an important factor contributing to the magnitude of the intercropping effect.


2021 ◽  
Vol 491 ◽  
pp. 119145
Author(s):  
Chen Gong ◽  
Qingyue Tan ◽  
Guobin Liu ◽  
Mingxiang Xu

Sign in / Sign up

Export Citation Format

Share Document