The role of biochar particle size and application rate in promoting the hydraulic and physical properties of sandy desert soil

CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105607
Author(s):  
Guiquan Fu ◽  
Xiaona Qiu ◽  
Xianying Xu ◽  
Wen Zhang ◽  
Fei Zang ◽  
...  
Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1293
Author(s):  
Abdulaziz G. Alghamdi ◽  
Abdulrasoul Al-Omran ◽  
Arafat Alkhasha ◽  
Zafer Alasmary ◽  
Anwar A. Aly

Water management and irrigation conservation in calcareous sandy soil are of significant importance for sustaining agricultural production, especially in arid and semi-arid region that facing scarcity of water resources. The changes in hydro-physical characteristics of calcareous sand soil were investigated after date palm waste-derived biochar application in column trials. Significance of pyrolysis temperature (300 °C, 500 °C, and 700 °C), particle size [<0.5 mm (D0.5), 0.5–1 mm (D1), and 1–2 mm (D2)], and application rate (1%, 2.5%, and 5%) were studied. Variations in infiltration rate, intermittent evaporation, and saturated hydraulic conductivity as a function of aforementioned factors were investigated. After amending the top 10-cm soil layer with different biochar and application rates, the columns were subjected to six wetting and drying cycles by applying 25 cm3 tap water per week over a 6-week period. Overall, biochar application resulted in decreased saturated hydraulic conductivity, while improved cumulative evaporation. Specifically, biochar produced at 300 °C and 500 °C demonstrated 10.2% and 13.3% higher cumulative evaporation, respectively., whereas, biochar produced at 700 °C with 5% application rate resulted in decreased cumulative evaporation. Cumulative evaporation increased by 5.0%, 7.7% and, 7.8% for D0.5, D1 and D2 (mm) on average, respectively, as compared with the untreated soil. Thus, biochar with particle size 0.5–1 mm significantly improved hydro-physical properties when applied at 1%. Generally, using biochar produced at medium temperature and small particle size with appropriate application rates could improve the soil hydro-physical properties.


CATENA ◽  
2015 ◽  
Vol 135 ◽  
pp. 313-320 ◽  
Author(s):  
Mahmood Laghari ◽  
Muhammad Saffar Mirjat ◽  
Zhiquan Hu ◽  
Saima Fazal ◽  
Bo Xiao ◽  
...  

1976 ◽  
Vol 36 (01) ◽  
pp. 037-048 ◽  
Author(s):  
Eric P. Brass ◽  
Walter B. Forman ◽  
Robert V. Edwards ◽  
Olgierd Lindan

SummaryThe process of fibrin formation using highly purified fibrinogen and thrombin was studied using laser fluctuation spectroscopy, a method that rapidly determines particle size in a solution. Two periods in fibrin clot formation were noted: an induction period during which no fibrin polymerization occurred and a period of rapid increase in particle size. Direct measurement of fibrin monomer polymerization and fibrinopeptide release showed no evidence of an induction period. These observations were best explained by a kinetic model for fibrin clot formation incorporating a reversible fibrinogen-fibrin monomer complex. In this model, the complex serves as a buffer system during the earliest phase of fibrin formation. This prevents the accumulation of free polymerizable fibrin monomer until an appreciable amount of fibrinogen has reacted with thrombin, at which point the fibrin monomer level rises rapidly and polymerization proceeds. Clinically, the complex may be a homeostatic mechanism preventing pathological clotting during periods of elevated fibrinogen.


Author(s):  
Sajjad Rimaz ◽  
Reza Katal

: In the present study, SAPO-34 particles were synthesized using hydrothermal (HT) and dry gel (DG) conversion methods in the presence of diethyl amine (DEA) as an organic structure directing agent (SDA). Carbon nanotubes (CNT) were used as hard template in the synthesis procedure to introduce transport pores into the structures of the synthesized samples. The synthesized samples were characterized with different methods to reveal effects of synthesis method and using hard template on their structure and catalytic performance in methanol to olefin reaction (MTO). DG conversion method results in smaller particle size in comparison with hydrothermal method, resulting in enhancing catalytic performance. On the other side, using CNT in the synthesis procedure with DG method results in more reduction in particle size and formation of hierarchical structure which drastically improves catalytic performance.


1991 ◽  
Vol 56 (10) ◽  
pp. 1993-2008
Author(s):  
S. Hanafi ◽  
G. M. S. El-Shafei ◽  
B. Abd El-Hamid

The hydration of tricalcium silicate (C3S) with three grain sizes of monoclinic (M) and triclinic (T) modifications and on their thermally activated samples were investigated by exposure to water vapour at 80°C for 60 days. The products were investigated by XRD, TG and N2 adsorption. The smaller the particle size the greater was the hydration for both dried and activated samples from (M). In the activated samples a hydrate with 2θ values of 38.4°, 44.6° and 48.6° could be identified. Hydration increased with particle size for the unactivated (T) samples but after activation the intermediate size exhibited enhanced hydration. Thermal treatment at 950°C of (T) samples increased the surface active centers on the expense of those in the bulk. Changes produced in surface texture upon activation and/or hydration are discussed.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 574
Author(s):  
Nikhat Perween ◽  
Sultan Alshehri ◽  
T. S. Easwari ◽  
Vivek Verma ◽  
Md. Faiyazuddin ◽  
...  

Molecules with poor aqueous solubility are difficult to formulate using conventional approaches and are associated with many formulation delivery issues. To overcome these obstacles, nanosuspension technology can be one of the promising approaches. Hence, in this study, the feasibility of mefenamic acid (MA) oral nanosuspension was investigated for pediatric delivery by studying the role of excipients and optimizing the techniques. Nanosuspensions of MA were prepared by adopting an antisolvent precipitation method, followed by ultrasonication with varying concentrations of polymers, surfactants, and microfluidics. The prepared nanosuspensions were evaluated for particle size, morphology, and rheological measures. Hydroxypropyl methylcellulose (HPMC) with varying concentrations and different stabilizers including Tween® 80 and sodium dodecyl sulfate (SLS) were used to restrain the particle size growth of the developed nanosuspension. The optimized nanosuspension formula was stable for more than 3 weeks and showed a reduced particle size of 510 nm with a polydispersity index of 0.329. It was observed that the type and ratio of polymer stabilizers were responsive on the particle contour and dimension and stability. We have developed a biologically compatible oral nanoformulation for a first-in-class drug beautifully designed for pediatric delivery that will be progressed toward further in vivo enabling studies. Finally, the nanosuspension could be considered a promising carrier for pediatric delivery of MA through the oral route with enhanced biological impact.


Sign in / Sign up

Export Citation Format

Share Document