scholarly journals Investigating the Feasibility of Mefenamic Acid Nanosuspension for Pediatric Delivery: Preparation, Characterization, and Role of Excipients

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 574
Author(s):  
Nikhat Perween ◽  
Sultan Alshehri ◽  
T. S. Easwari ◽  
Vivek Verma ◽  
Md. Faiyazuddin ◽  
...  

Molecules with poor aqueous solubility are difficult to formulate using conventional approaches and are associated with many formulation delivery issues. To overcome these obstacles, nanosuspension technology can be one of the promising approaches. Hence, in this study, the feasibility of mefenamic acid (MA) oral nanosuspension was investigated for pediatric delivery by studying the role of excipients and optimizing the techniques. Nanosuspensions of MA were prepared by adopting an antisolvent precipitation method, followed by ultrasonication with varying concentrations of polymers, surfactants, and microfluidics. The prepared nanosuspensions were evaluated for particle size, morphology, and rheological measures. Hydroxypropyl methylcellulose (HPMC) with varying concentrations and different stabilizers including Tween® 80 and sodium dodecyl sulfate (SLS) were used to restrain the particle size growth of the developed nanosuspension. The optimized nanosuspension formula was stable for more than 3 weeks and showed a reduced particle size of 510 nm with a polydispersity index of 0.329. It was observed that the type and ratio of polymer stabilizers were responsive on the particle contour and dimension and stability. We have developed a biologically compatible oral nanoformulation for a first-in-class drug beautifully designed for pediatric delivery that will be progressed toward further in vivo enabling studies. Finally, the nanosuspension could be considered a promising carrier for pediatric delivery of MA through the oral route with enhanced biological impact.

Author(s):  
VISHAL S REDDY ◽  
GOWDA DV ◽  
VISHAL GUPTA N

Objective: The present research is to formulate Glimepiride and Atorvastatin Calcium Nanoparticles for the type-2 diabetes mellitus for improvement of glucose tolerance associated with dyslipidemia formulated by liquid antisolvent precipitation technique. Method: Glimepiride nanoparticles and atorvastatin calcium nanoparticles were prepared by using a liquid antisolvent precipitation technique. Solvent to antisolvent ratio used was 3.5:6.5 and 2.5:7.5 and the drug concentration used was 40 mg/ml and 60mg/ml respectively. Result: The XRD was determined, the data of the optimized Glimepiride formulation revealed that the prepared nanosized Glimepiride powder was existed in crystalline form. The percent yield for the formulations of Glimepiride and atorvastatin calcium nanoparticles was found to be 72.8±1.8%, 75.3±2.2% respectively. In-vivo studies in albino wistar rats demonstrated that the Cmax and AUC0−24h of optimized Glimepiride and atorvastatin calcium  nanosized formulation was found to be 24451.14±2170.5 ng/ml, 162945.12±241.5 ng/ml and 1385.43±153.3 ng/ml,3636.57±65.2 ng/ml respectively. Dissolution study of optimized formulations shows that marked enhancement of dissolution rate. The stability studies of mixture of Glimepiride and atorvastatin calcium powder when stored at 4±3oC refrigerated temperature has shown no significant changes in physical appearance, drug content, particle size and PDI. Conversely the sample stored at room temperature has shown significant increase in particle size and PDI, with no significant changes in drug content and physical appearance. Conclusion: The Formulation of glimepiride and atorvastatin calcium drug nanoparticles shows increase in the surface-to-volume ratio of API, resulting in better drug solubility and hence increasing the bio-availability when compared to its pure form.


Author(s):  
Mohsen Hedaya ◽  
Farzana Bandarkar ◽  
Aly Nada

Introduction: The objectives were to prepare, characterize and in vivo evaluate different ibuprofen (IBU) nanosuspensions prepared by ultra-homogenization, after oral administration to rabbits. Methods: The nanosuspensions produced by ultra-homogenization were tested and compared with a marketed IBU suspension for particle size, in vitro dissolution and in vivo absorption. Five groups of rabbits received orally 25 mg/kg of IBU nanosuspension, nanoparticles, unhomogenized suspension, marketed product and untreated suspension. A sixth group received 5 mg/kg IBU intravenously. Serial blood samples were obtained after IBU administration. Results: The formulated nanosuspensions showed significant decrease in particle size. Polyvinyl Pyrrolidone K30 (PP) was found to improve IBU aqueous solubility much better than the other tested polymers. Addition of Tween 80 (TW), in equal amount as PP (IBU: PP:TW, 1:2:2 w/w) resulted in much smaller particle size and better dissolution rate. The Cmax achieved were 14.8±1.64, 11.1±1.37, 9.01±0.761, 7.03±1.38 and 3.23±1.03 μg/ml and the tmax were 36±8.2, 39±8.2, 100±17.3, 112±15 and 105±17 min for the nanosuspension, nanoparticle, unhomogenized suspension, marketed IBU suspension and untreated IBU suspension in water, respectively. Bioavailability of the different formulations relative to the marketed suspension were the highest for nanosuspension> unhomogenized suspension> nanoparticles> untreated IBU suspension. Conclusion: IBU/PP/TW nanosuspensions showed enhanced in vitro dissolution as well as faster rate and higher extent of absorption as indicated from the higher Cmax, shorter tmax and larger AUC. The in vivo data supported the in vitro results. Nanosuspensions prepared by ultra-high-pressure-homogenization technique can be used as a good formulation strategy to enhance the rate and extent of absorption of poorly soluble drugs.


Author(s):  
Moon Rajkumar ◽  
Gattani Surendra

 Objective: The objective of this study was to increase the solubility and dissolution rate of paliperidone (PAL) by preparing its nanocrystals using different hydrophilic carriers by antisolvent precipitation technique.Methods: The nanoparticles (NP) were characterized for aqueous solubility, drug content, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, particle size, and in vitro-in vivo analysis.Results: The results showed improved solubility and dissolution rate of NPs when compared to pure drug and physical mixture (PM). Solubility data showed a linear graph giving an indication that there is a gradual increase in the solubility profile of the drug with an increase in concentration of the carriers. At highest concentration, the solubility of NPs with Plasdone S630, Povidone K-25, and PVP K-30 found to be increased by 12 folds, 9 folds and 6 folds, respectively, as compared to pure drug. The release profile of NPs with Plasdone S630 in terms of dissolution efficiency at 60 min (DE60), initial dissolution rate (IDR), amount release in 15 min (Q15 min), and time for 75% release (t75%) shows better results when compared to pure drug, PM, and also NPs with povidone 25 and povidone 30. In vivo study reveals that optimized NPs elicited significant induction of cataleptic behavior which is the indication of antipsychotic agent(s) effect.Conclusion: The process antisolvent precipitation under constant stirring may be a promising method to produce stable PAL NPs with markedly enhanced solubility and dissolution rate due to nanonization with the increased surface area, improved wettability, and reduced diffusion pathway.


Author(s):  
Mohammed Sabar Al-lami ◽  
Malath H. Oudah ◽  
Firas A. Rahi

This study was carried out to prepare and characterize domperidone nanoparticles to enhance solubility and the release rate. Domperidone is practically insoluble in water and has low and an erratic bioavailability range from 13%-17%. The domperidone nanoparticles were prepared by solvent/antisolvent precipitation method at different polymer:drug ratios of 1:1 and 2:1 using different polymers and grades of poly vinyl pyrolidone, hydroxy propyl methyl cellulose and sodium carboxymethyl cellulose as stabilizers. The effect of polymer type, ratio of polymer:drug, solvent:antisolvent ratio, stirring rate and stirring time on the particle size, were investigated and found to have a significant (p? 0.05) effect on particle size. The best formula was obtained with lowest average particle size of 84.05. This formula was studied for compatibility by FTIR and DSC, surface morphology by FESEM and crystalline state by XRPD. Then domperidone nanoparticles were formulated into a simple capsule dosage form in order to study of the in vitro release of drug from nanoparticles in comparison raw drug and mixture of polymer:drug ratios of 2:1. The release of domperidone from best formula was highly improved with a significant (p? 0.05) increase.


Author(s):  
Rusul M. Alwan ◽  
Nawal A. Rajab

Selexipag is an orally selective long-acting prostacyclin receptor agonist, which indicated for the treatment of pulmonary arterial hypertension. It is practically insoluble in water ( class II, according to BCS). This work aims to prepare and optimized Selexipag nanosuspensions to achieve an enhancement in the in vitro dissolution rate. The solvent antisolvent precipitation method was used for the production of nanosuspension, and the effect of formulation parameters (stabilizer type, drug: stabilizer ratio, and use of co-stabilizer) and process parameter (stirring speed) on the particle size and polydispersity index were studied. SLPNS prepared with Soluplus® as amain stabilizer (F15) showed the smallest particle size 47nm with PDI and Zeta potential value of 0.073 and -47mV, respectively. SLPNS exhibited an increase in the dissolution rate in phosphate buffer pH 6.8 (100% drug release during 60 min) compared to the pure drug ( 40% during the same time). This result indicates that SLPNS is an efficient way of improving the dissolution rate.  


2019 ◽  
Vol 19 (13) ◽  
pp. 1618-1626 ◽  
Author(s):  
Mahdi Hatamipour ◽  
Mahmoud R. Jaafari ◽  
Amir A. Momtazi-Borojeni ◽  
Mahin Ramezani ◽  
Amirhossein Sahebkar

Background: Niclosamide is an FDA-approved and old anti-helminthic drug used to treat parasitic infections. Recent studies have shown that niclosamide has broad anti-tumor effects relevant to the treatment of cancer. However, this drug has a low aqueous solubility hindering its systemic use. Herein, we report the preparation and characterization of niclosamide nanoliposomes and their in vivo anti-tumor effects. Methods: Nanoliposomes were prepared using thin-film method and the drug was encapsulated with a remote loading method. The nanoliposomes were investigated by the observation of morphology, analysis of particle size and zeta potential. Additionally, qualitative and quantitative analyses were performed using HPLC. We assessed the in vitro cytotoxicity of the nanoliposomal niclosamide on B16F10 melanoma cells. Inhibition of tumor growth was investigated in C57BL/6 mice bearing B16F0 melanoma cancer. Results: Analytical results indicated that the nanoliposomal system is a homogeneous and stable colloidal dispersion of niclosamide particles. Atomic force microscopy images and particle size analysis revealed that all niclosamide particles had a spherical shape with a diameter of approximately 108nm. According to in vitro and in vivo studies, nanoliposomal niclosamide exhibited a better anti-tumor activity against B16F10 melanoma tumor compared with free niclosamide. Conclusion: Nanoliposomal encapsulation enhanced the aqueous solubility of niclosamide and improved its anti-tumor properties.


2009 ◽  
Vol 24 (5) ◽  
pp. 1756-1760 ◽  
Author(s):  
Xixian Luo ◽  
Wanghe Cao ◽  
Mingming Xing

Monodisperse spherical Y2O2S:Yb,Ho nanocrystals with particle size about 50 nm were prepared by a modified homogeneous precipitation method combined with low-temperature sulfurization process. The Y2O2S:Yb,Ho nanocrystals exhibit an intense green emission assigned to the Ho3+ ions 5F4, 5S2 → 4I15/2 transition under 980 nm infrared pump. The upconversion luminescence brightness of Y2O2S:Yb,Ho is 526 Cd/m2 under 4.63 W/cm2 pump density, indicating that the as-prepared Y2O2S:Yb,Ho nanocrystals can meet the requirement of in vivo imaging. The formation mechanism of monodisperse spherical oxysulfide nanoparticles is also discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ayesha Imtiaz ◽  
Muhammad Akhyar Farrukh ◽  
Muhammad Khaleeq-ur-rahman ◽  
Rohana Adnan

Calcium oxide (CaO) nanoparticles are known to exhibit unique property due to their high adsorption capacity and good catalytic activity. In this work the CaO nanocatalysts were prepared by hydrothermal method using anionic surfactant, sodium dodecyl sulphate (SDS), as a templating agent. The as-synthesized nanocatalysts were further used as substrate for the synthesis of alumina doped calcium oxide (Al2O3·CaO) nanocatalysts via deposition-precipitation method at the isoelectric point of CaO. The Al2O3·CaO nanocatalysts were characterized by FTIR, XRD, TGA, TEM, and FESEM techniques. The catalytic efficiencies of these nanocatalysts were studied for the photodegradation of 2,4,6-trinitrophenol (2,4,6-TNP), which is an industrial pollutant, spectrophotometrically. The effect of surfactant and temperature on size of nanocatalysts was also studied. The smallest particle size and highest percentage of degradation were observed at critical micelle concentration of the surfactant. The direct optical band gap of the Al2O3·CaO nanocatalyst was found as 3.3 eV.


Sign in / Sign up

Export Citation Format

Share Document