Mechanistic understanding of linear erosion under concentrated flow based on laboratory simulations

CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105708
Author(s):  
Jianqiao Han ◽  
Binbin Li ◽  
Guohua Lan ◽  
Yunyun Dong ◽  
Wenyan Ge ◽  
...  
Author(s):  
Z. I. Khazheeva ◽  
S. S. Sanzhanova

The Dzhida ore field in the Zakamensk district of Buryatia features high concentration of mineralization within a small area. The Dzhida deposit is composed of complex ore. The ore field contains commercial-value primary deposits: Pervomai stockwork of molybdenum, Kholtoson tungsten lode and Inkur stockwork of tungsten. The Modonkul river catchment basin lies inside the Dzhida ore field. A real threat to the town of Zakamensk is created by manmade sand-bulk (old) tailings and slurry dump. By now, the concentrated flow of natural and man-made sand enters the low terrace and floodplain of the Modonkul river in the form of a talus train. This study is focused on the influence of the mine drainage effluent and the Inkur tributary on the water chemistry in the Modonkul river. 80 water samples were taken from the surface layer 0-0.5 m thick at five stations. Physicochemical indices of water were measured at the water sampling points, and the water chemistry was analyzed in a laboratory. In the background conditions, cations and anions in the Modonkul water chemistry range in decreasing order as follows: Са2+ > Mg2+ > Na++К+ и HCO - > SO 2- > Cl-. In the zone of mixture of natural and mine process water, the chemistry changes: from hydrocarbonate to sulfate (anion), from calcium-magnesium to sodium-calcium (cation). Downstream the natural chemistry changes to the hydrocabonate-sulfate composition, with prevailing content of calcium in cations. Iron content of water lowers 3-4 times after influx of mine effluents, while the contents of Mn, Zn, Co and Cd grow and then decrease downstream.


2018 ◽  
Vol 25 (20) ◽  
pp. 2292-2303 ◽  
Author(s):  
Negar Talaei Zanjani ◽  
Monica Miranda Saksena ◽  
Fariba Dehghani ◽  
Anthony L. Cunningham

Hemocyanins are large and versatile glycoproteins performing various immunological and biological functions in many marine invertebrates including arthropods and molluscs. This review discusses the various pharmacological applications of mollusc hemocyanin such as antiviral activity, immunostimulatory and anticancer properties that have been reported in the literature between the years 2000 and 2016. Emphasis is placed on a better mechanistic understanding of hemocyanin as a therapeutic agent. Elucidation of the mechanism of action is essential to improve the clinical efficacy and for a better understanding of some endogenous immunological functions of this complex glycoprotein.


2021 ◽  
Author(s):  
Samuel M. Blau ◽  
Hetal D Patel ◽  
Evan Walter Clark Spotte-Smith ◽  
Xiaowei Xie ◽  
Shyam Dwaraknath ◽  
...  

Modeling reactivity with chemical reaction networks could yield fundamental mechanistic understanding that would expedite the development of processes and technologies for energy storage, medicine, catalysis, and more. Thus far, reaction...


Sign in / Sign up

Export Citation Format

Share Document