scholarly journals Comparison of observed and DEM-driven field-to-river routing of flow from eroding fields in an arable lowland catchment

CATENA ◽  
2022 ◽  
Vol 208 ◽  
pp. 105737
Author(s):  
David Favis-Mortlock ◽  
John Boardman ◽  
Ian Foster ◽  
Mark Shepheard
Keyword(s):  
2021 ◽  
Author(s):  
Aristeidis Koutroulis ◽  
Manolis Grillakis ◽  
Camilla Mathison ◽  
Eleanor Burke

<p>The JULES land surface model has a wide ranging application in studying different processes of the earth system including hydrological modeling [1]. Our aim is to tune the existing configuration of the global river routing scheme at 0.5<sup>o</sup> spatial resolution [2] and improve river flow simulation performance at finer temporal scales. To do so, we develop a factorial experiment of varying effective river velocity and meander coefficient, components of the Total Runoff Integrating Pathways (TRIP) river routing scheme. We test and adjust best performing configurations at the basin scale based on observations from GRDC 230 stations that exhibiting a variety of hydroclimatic and physiographic conditions. The analysis was focused on watersheds of near-natural conditions [3] to avoid potential influences of human management on river flow. The HydroATLAS database [4] was employed to identify basin scale descriptive hydro-environmental indicators that could be associated with the components of the TRIP. These indicators summarize hydrologic and physiographic characteristics of the drainage area of each flow gauge. For each basin we select the best performing set of TRIP parameters per basin resulting to the optimal efficiency of river flow simulation based on the Nash–Sutcliffe and Kling–Gupta efficiency metrics. We find that better performance is driven predominantly by characteristics related to the stream gradient and terrain slope. These indicators can serve as descriptors for extrapolating the adjustment of TRIP parameters for global land configurations at 0.5<sup>o</sup> spatial resolution using regression models.</p><p> </p><p>[1] Papadimitriou et al 2017, Hydrol. Earth Syst. Sci., 21, 4379–4401</p><p>[2] Falloon et al 2007. Hadley Centre Tech. Note 72, 42 pp.</p><p>[3] Fang Zhao et al 2017 Environ. Res. Lett. 12 075003</p><p>[4] Linke et al 2019, Scientific Data 6: 283.</p>


2018 ◽  
Author(s):  
Trung Nguyen-Quang ◽  
Jan Polcher ◽  
Agnès Ducharne ◽  
Thomas Arsouze ◽  
Xudong Zhou ◽  
...  

Abstract. This study presents a revised river routing scheme (RRS) for the Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. The revision is carried out to benefit from the high resolution topography provided the Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS), processed to a resolution of approximately 1 kilometer. The RRS scheme of the ORCHIDEE uses a unit-to-unit routing concept which allows to preserve as much of the hydrological information of the HydroSHEDS as the user requires. The evaluation focuses on 12 rivers of contrasted size and climate which contribute freshwater to the Mediterranean Sea. First, the numerical aspect of the new RRS is investigated, to identify the practical configuration offering the best trade-off between computational cost and simulation quality for ensuing validations. Second, the performance of the revised scheme is evaluated against observations at both monthly and daily timescales. The new RRS captures satisfactorily the seasonal variability of river discharges, although important biases come from the water budget simulated by the ORCHIDEE model. The results highlight that realistic streamflow simulations require accurate precipitation forcing data and a precise river catchment description over a wide range of scales, as permitted by the new RRS. Detailed analyses at the daily timescale show promising performances of this high resolution RRS for replicating river flow variation at various frequencies. Eventually, this RRS is well adapted for further developments in the ORCHIDEE land surface model to assess anthropogenic impacts on river processes (e.g. damming for irrigation operation).


Author(s):  
Ming Han ◽  
Juliane Mai ◽  
Bryan A. Tolson ◽  
James R. Craig ◽  
Étienne Gaborit ◽  
...  

2015 ◽  
Vol 120 (10) ◽  
pp. 4613-4629 ◽  
Author(s):  
Ji-Woo Lee ◽  
Song-You Hong ◽  
Jung-Eun Esther Kim ◽  
Kei Yoshimura ◽  
Suryun Ham ◽  
...  

2007 ◽  
Vol 30 (7-8) ◽  
pp. 855-869 ◽  
Author(s):  
Ramdane Alkama ◽  
M. Kageyama ◽  
G. Ramstein ◽  
O. Marti ◽  
P. Ribstein ◽  
...  

2018 ◽  
Vol 11 (12) ◽  
pp. 4965-4985 ◽  
Author(s):  
Trung Nguyen-Quang ◽  
Jan Polcher ◽  
Agnès Ducharne ◽  
Thomas Arsouze ◽  
Xudong Zhou ◽  
...  

Abstract. The river routing scheme (RRS) in the Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model is a valuable tool for closing the water cycle in a coupled environment and for validating the model performance. This study presents a revision of the RRS of the ORCHIDEE model that aims to benefit from the high-resolution topography provided by the Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS), which is processed to a resolution of approximately 1 km. Adapting a new algorithm to construct river networks, the new RRS in ORCHIDEE allows for the preservation of as much of the hydrological information from HydroSHEDS as the user requires. The evaluation focuses on 12 rivers of contrasting size and climate which contribute freshwater to the Mediterranean Sea. First, the numerical aspect of the new RRS is investigated, in order to identify the practical configuration offering the best trade-off between computational cost and simulation quality for ensuing validations. Second, the performance of the new scheme is evaluated against observations at both monthly and daily timescales. The new RRS satisfactorily captures the seasonal variability of river discharge, although important biases stem from the water budget simulated by the ORCHIDEE model. The results highlight that realistic streamflow simulations require accurate precipitation forcing data and a precise river catchment description over a wide range of scales, as permitted by the new RRS. Detailed analyses at the daily timescale show the promising performance of this high-resolution RRS with respect to replicating river flow variation at various frequencies. Furthermore, this RRS may also eventually be well adapted for further developments in the ORCHIDEE land surface model to assess anthropogenic impacts on river processes (e.g. damming for irrigation operation).


2019 ◽  
Vol 50 (4) ◽  
pp. 991-1001 ◽  
Author(s):  
Mohammad Ashrafi ◽  
Lloyd H. C. Chua ◽  
Chai Quek

Abstract Recent advancements in neuro-fuzzy models (NFMs) have made possible the implementation of dynamic rule base systems. This is in comparison with static applications commonly seen in global NFMs such as the Adaptive-Network-Based Fuzzy Inference System (ANFIS) model widely used in hydrological modeling. This study underlines key differences between local and global NFMs with an emphasis on rule base dynamics, in the context of two common flow forecast applications. A global NFM, ANFIS, and two local NFMs, Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) and Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK), were tested. Results from all NFMs compared favorably when benchmarked against physically based models. Rainfall–runoff modeling is a complex process which benefits from the advanced rule generation and pruning mechanisms in GSETSK, resulting in a more compact rule base. Although ANFIS resulted in the same number of rules, this came about at the expense of having the need for a large training dataset. All NFMs generated a similar number of rules for the river routing application, although local NFMs yielded better results for forecasts at longer lead times. This is attributed to the fact that the routing procedure is less complex and can be adequately modeled by static NFMs.


Sign in / Sign up

Export Citation Format

Share Document