2D and 3D techniques to assess the structure and porosity of Oxisols and their correlations with other soil properties

CATENA ◽  
2022 ◽  
Vol 210 ◽  
pp. 105899
Author(s):  
Thaís Nascimento Pessoa ◽  
Miguel Cooper ◽  
Márcio Renato Nunes ◽  
Daniel Uteau ◽  
Stephan Peth ◽  
...  
Keyword(s):  
Author(s):  
A. V. Zhukov ◽  
G. O. Zadorozhnaya

<p>We studied the spatial variability of pedozem mechanical impedance in Research Remediation Center of the Dnipropetrovsk State Agrarian University in Ordzhonikidze. The statistical distribution of the soil mechanical impedance within the studied area is characterized by deviation from the normal law in 0–10 and 30–50 cm layers from the surface. 2D and 3D modeling shows the structural design of the soil as locations of high mechanical impedance which found in the soils with less hardness.</p> <p><em>Key words</em>: <em>the hardness of the soil, the spatial heterogeneity of soil properties, land reclamation.</em></p>


Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


2021 ◽  
Author(s):  
Ruoyang Liu ◽  
Ke Tian Tan ◽  
Yifan Gong ◽  
Yongzhi Chen ◽  
Zhuoer Li ◽  
...  

Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.


2012 ◽  
Author(s):  
Michael Sackllah ◽  
Denny Yu ◽  
Charles Woolley ◽  
Steven Kasten ◽  
Thomas J. Armstrong

Author(s):  
Denny Yu ◽  
Michael Sackllah ◽  
Charles Woolley ◽  
Steven Kasten ◽  
Thomas J. Armstrong
Keyword(s):  

2014 ◽  
Vol 75 (S 02) ◽  
Author(s):  
Gerlig Widmann ◽  
P. Schullian ◽  
R. Hoermann ◽  
E. Gassner ◽  
H. Riechelmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document