Carbon dioxide as an alternative solvent for the direct synthesis of hydrogen peroxide: A review of recent activities

2015 ◽  
Vol 248 ◽  
pp. 128-137 ◽  
Author(s):  
Aneta Pashkova ◽  
Roland Dittmeyer
2016 ◽  
Vol 6 (6) ◽  
pp. 1593-1610 ◽  
Author(s):  
Yanhui Yi ◽  
Li Wang ◽  
Gang Li ◽  
Hongchen Guo

The direct synthesis of H2O2 from H2 and O2 using Pd catalyst, fuel cell and plasma methods have been reviewed systematically.


Author(s):  
Yoshifumi Maeda ◽  
Daiju Doubayashi ◽  
Takumi Ootake ◽  
Masaya Oki ◽  
Bunzo Mikami ◽  
...  

Formate oxidase (FOD), which catalyzes the oxidation of formate to yield carbon dioxide and hydrogen peroxide, belongs to the glucose–methanol–choline oxidoreductase (GMCO) family. FOD fromAspergillus oryzaeRIB40, which has a modified FAD as a cofactor, was crystallized at 293 K by the hanging-drop vapour-diffusion method. The crystal was orthorhombic and belonged to space groupC2221. Diffraction data were collected from a single crystal to 2.4 Å resolution.


Author(s):  
Oscar Felipe Arbeláez-Pérez ◽  
Sara Dominguez Cardozo ◽  
Andrés Felipe Orrego-Romero ◽  
Aida Luz Villa Holguin ◽  
Felipe Bustamante Londoño

The catalytic activity for dimethyl carbonate formation from carbon dioxide and methanol over mono and bimetallic Cu:Ni supported on activated carbon is presented. Bimetallic catalysts exhibit higher catalytic activity than the monometallic samples, being Cu:Ni-2:1 (molar ratio) the best catalyst; X-Ray diffraction, transmission electron microscopy, and metal dispersion analysis provided insight into the improved activity. In situ FT-IR experiments were conducted to investigate the mechanism of formation of dimethyl carbonate from methanol and carbon dioxide over Cu-Ni:2-1. The kinetics of the direct synthesis of dimethyl carbonate in gas phase over Cu:Ni-2:1 supported on activated carbon catalyst was experimentally investigated at 12 bar and temperatures between 90 oC and 130 oC, varying the partial pressures of CO2 and methanol. Experimental kinetic data were consistent with a Langmuir–Hinshelwood model that included carbon dioxide and methanol adsorption on catalyst actives sites (Cu, Ni and Cu-Ni), and the reaction of adsorbed CO2 with methoxi species as the rate determining step. The estimated apparent activation energy was 94.2 kJ mol-1.


Sign in / Sign up

Export Citation Format

Share Document