Association of cocaine- and amphetamine-regulated transcript (CART) messenger RNA level, food intake, and growth in channel catfish

Author(s):  
Yasuhiro Kobayashi ◽  
Brian C. Peterson ◽  
Geoffrey C. Waldbieser
Endocrinology ◽  
1998 ◽  
Vol 139 (2) ◽  
pp. 466-473 ◽  
Author(s):  
B. Xu ◽  
M. G. Dube ◽  
P. S. Kalra ◽  
W. G. Farmerie ◽  
A. Kaibara ◽  
...  

Abstract Although ciliary neurotropic factor (CNTF) is a tropic factor in nervous system development and maintenance, peripheral administration of this cytokine also causes severe anorexia and weight loss. The neural mechanism(s) mediating the loss of appetite is not known. As hypothalamic neuropeptide Y (NPY) is a potent orexigenic signal, we tested the hypothesis that CNTF may adversely affect NPYergic signaling in the hypothalamus. Intraperitoneal administration of CNTF (250μ g/kg) daily for 4 days significantly suppressed 24-h food intake in a time-dependent manner and decreased body weight. The loss in body weight was similar to that which occurred in pair-fed (PF) rats. As expected, hypothalamic NPY gene expression, determined by measurement of steady state prepro-NPY messenger RNA by ribonuclease protection assay, significantly increased in PF rats in response to energy imbalance. However, despite a similar loss in body weight, there was no increase in NPY gene expression in CNTF-treated rats. Daily administration of CNTF intracerebroventricularly (0.5 or 5.0 μg/rat) also produced anorexia and body weight loss. In this experiment, negative energy balance produced by both PF and food deprivation augmented hypothalamic NPY gene expression. However, despite reduced intake and loss of body weight, no similar increment in hypothalamic NPY gene expression was observed in CNTF-treated rats. In fact, in rats treated with higher doses of CNTF (5.0 μg/rat), NPY gene expression was reduced below the levels seen in control, freely fed rats. Furthermore, CNTF treatment also markedly decreased NPY-induced feeding. These results suggested that anorexia in CNTF-treated rats may be due to a deficit in NPY supply and possibly in the release and suppression of NPY-induced feeding. The possibility that CNTF-induced anorexia may be caused by increased leptin was next examined. Daily intracerebroventricular injections of leptin (7 μg/rat) decreased food intake, body weight, and hypothalamic NPY gene expression in a manner similar to that seen after CNTF treatment. Leptin administration also suppressed NPY-induced feeding. However, peripheral and central CNTF injections markedly decreased leptin messenger RNA in lipocytes, indicating a deficiency of leptin in these rats; thus, leptin was unlikely to be involved in appetite suppression. Thus, these results show that a two-pronged central action of CNTF, causing diminution in both NPY availability and the NPY-induced feeding response, may underlie the severe anorexia. Further, unlike other members of the cytokine family, suppression of NPYergic signaling in the hypothalamus by CNTF does not involve up-regulation of leptin, but may involve a direct action on hypothalamic NPY neurons or on neural circuits that regulate NPY signaling in the hypothalamus.


2001 ◽  
Vol 3 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Jill B.K. Leonard ◽  
Geoffrey C. Waldbieser ◽  
Jeffrey T. Silverstein

Endocrinology ◽  
2000 ◽  
Vol 141 (4) ◽  
pp. 1332-1337 ◽  
Author(s):  
Diana L. Williams ◽  
Joel M. Kaplan ◽  
Harvey J. Grill

Abstract Fourth intracerebroventricular (4th-icv) administration of the melanocortin-3/4 receptor (MC3/4-R) agonist, MTII, reduces food intake; the antagonist, SHU9119, increases feeding. The dorsal motor nucleus of the vagus nerve (DMX) contains the highest density of MC4-R messenger RNA in the brain. To explore the possibility that the DMX contributes to 4th-icv MC4-R effects, we delivered doses of MTII and SHU9119 that are subthreshold for ventricular response unilaterally through a cannula centered above the DMX. MTII markedly suppressed 2-h (50%), 4-h (50%), and 24-h (33%) intake. Feeding was significantly increased 4 h (50%) and 24 h (20%) after SHU9119 injections. These results suggest that receptors in the DMX, or the dorsal vagal complex more generally, underlie effects obtained with 4th-icv administration of these ligands. We investigated possible vagal mediation of 4th-icv MTII effects by giving the agonist to rats with subdiaphragmatic vagotomy. MTII suppressed 2-, 4-, and 24-h liquid diet intake (∼80%) to the same extent in vagotomized and surgical control rats. We conclude that stimulation or antagonism of MC3/4-Rs in the dorsal vagal complex yields effects on food intake that do not require an intact vagus nerve.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Oaklee Abernathy ◽  
Megan Dougherty ◽  
Danica Kostner ◽  
Ericka Nevarez ◽  
Abigail Schmidtberger ◽  
...  

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Rebekah Spainhour ◽  
Oaklee Abernathy ◽  
Megan Dougherty ◽  
Abigail Schmidtberger ◽  
Danica Kostner ◽  
...  
Keyword(s):  

Endocrinology ◽  
1999 ◽  
Vol 140 (3) ◽  
pp. 1175-1182 ◽  
Author(s):  
Belinda A. Henry ◽  
James W. Goding ◽  
Warren S. Alexander ◽  
Alan J. Tilbrook ◽  
Benedict J. Canny ◽  
...  

Abstract We have studied the effect of leptin on food intake and neuroendocrine function in ovariectomized ewes. Groups (n = 5) received intracerebroventricular infusions of either vehicle or leptin (20μ g/h) for 3 days and were blood sampled over 6 h on days −1, 2, and for 3 h on day 3 relative to the onset of the infusion. The animals were then killed to measure hypothalamic neuropeptide Y expression by in situ hybridization. Plasma samples were assayed for metabolic parameters and pituitary hormones. Food intake was reduced by leptin, but did not change in controls. Leptin treatment elevated plasma lactate and nonesterified fatty acids, but did not affect glucose or insulin levels, indicating a state of negative energy balance that was met by the mobilization of body stores. Pulse analysis showed that the secretion of LH and GH was not affected by leptin treatment, nor were the mean plasma concentrations of FSH, PRL, or cortisol. Expression of messenger RNA for neuropeptide Y in the arcuate nucleus was reduced by the infusion of leptin, primarily due to reduced expression per cell rather than a reduction in the number of cells observed. Thus, the action of leptin to inhibit food intake is dissociated from neuroendocrine function. These results suggest that the metabolic effects of leptin are mediated via neuronal systems that possess leptin receptors rather than via endocrine effects.


Sign in / Sign up

Export Citation Format

Share Document