scholarly journals Anorectic Effects of the Cytokine, Ciliary Neurotropic Factor, Are Mediated by Hypothalamic Neuropeptide Y: Comparison with Leptin*

Endocrinology ◽  
1998 ◽  
Vol 139 (2) ◽  
pp. 466-473 ◽  
Author(s):  
B. Xu ◽  
M. G. Dube ◽  
P. S. Kalra ◽  
W. G. Farmerie ◽  
A. Kaibara ◽  
...  

Abstract Although ciliary neurotropic factor (CNTF) is a tropic factor in nervous system development and maintenance, peripheral administration of this cytokine also causes severe anorexia and weight loss. The neural mechanism(s) mediating the loss of appetite is not known. As hypothalamic neuropeptide Y (NPY) is a potent orexigenic signal, we tested the hypothesis that CNTF may adversely affect NPYergic signaling in the hypothalamus. Intraperitoneal administration of CNTF (250μ g/kg) daily for 4 days significantly suppressed 24-h food intake in a time-dependent manner and decreased body weight. The loss in body weight was similar to that which occurred in pair-fed (PF) rats. As expected, hypothalamic NPY gene expression, determined by measurement of steady state prepro-NPY messenger RNA by ribonuclease protection assay, significantly increased in PF rats in response to energy imbalance. However, despite a similar loss in body weight, there was no increase in NPY gene expression in CNTF-treated rats. Daily administration of CNTF intracerebroventricularly (0.5 or 5.0 μg/rat) also produced anorexia and body weight loss. In this experiment, negative energy balance produced by both PF and food deprivation augmented hypothalamic NPY gene expression. However, despite reduced intake and loss of body weight, no similar increment in hypothalamic NPY gene expression was observed in CNTF-treated rats. In fact, in rats treated with higher doses of CNTF (5.0 μg/rat), NPY gene expression was reduced below the levels seen in control, freely fed rats. Furthermore, CNTF treatment also markedly decreased NPY-induced feeding. These results suggested that anorexia in CNTF-treated rats may be due to a deficit in NPY supply and possibly in the release and suppression of NPY-induced feeding. The possibility that CNTF-induced anorexia may be caused by increased leptin was next examined. Daily intracerebroventricular injections of leptin (7 μg/rat) decreased food intake, body weight, and hypothalamic NPY gene expression in a manner similar to that seen after CNTF treatment. Leptin administration also suppressed NPY-induced feeding. However, peripheral and central CNTF injections markedly decreased leptin messenger RNA in lipocytes, indicating a deficiency of leptin in these rats; thus, leptin was unlikely to be involved in appetite suppression. Thus, these results show that a two-pronged central action of CNTF, causing diminution in both NPY availability and the NPY-induced feeding response, may underlie the severe anorexia. Further, unlike other members of the cytokine family, suppression of NPYergic signaling in the hypothalamus by CNTF does not involve up-regulation of leptin, but may involve a direct action on hypothalamic NPY neurons or on neural circuits that regulate NPY signaling in the hypothalamus.

2001 ◽  
Vol 280 (4) ◽  
pp. R1052-R1060 ◽  
Author(s):  
Cynthia A. Blanton ◽  
Barbara A. Horwitz ◽  
James E. Blevins ◽  
Jock S. Hamilton ◽  
Eduardo J. Hernandez ◽  
...  

The anorexia of aging syndrome in humans is characterized by spontaneous body weight loss reflecting diminished food intake. We reported previously that old rats undergoing a similar phenomenon of progressive weight loss (i.e., senescent rats) also display altered feeding behavior, including reduced meal size and duration. Here, we tested the hypothesis that blunted responsiveness to neuropeptide Y (NPY), a feeding stimulant, occurs concurrently with senescence-associated anorexia/hypophagia. Young (8 mo old, n = 9) and old (24–30 mo old, n = 11) male Fischer 344 rats received intracerebroventricular NPY or artificial cerbrospinal fluid injections. In response to a maximum effective NPY dose (10 μg), the net increase in size of the first meal after injection was similar in old weight-stable (presenescent) and young rats (10.85 ± 1.73 and 12.63 ± 2.52 g/kg body wt0.67, respectively). In contrast, senescent rats that had spontaneously lost ∼10% of body weight had significantly lower net increases at their first post-NPY meal (1.33 ± 0.33 g/kg body wt0.67) than before they began losing weight. Thus altered feeding responses to NPY occur in aging rats concomitantly with spontaneous decrements in food intake and body weight near the end of life.


Endocrinology ◽  
2006 ◽  
Vol 147 (1) ◽  
pp. 421-431 ◽  
Author(s):  
Michael Koban ◽  
Wei Wei Le ◽  
Gloria E. Hoffman

Chronic rapid eye movement (paradoxical) sleep deprivation (REM-SD) of rats leads to two conspicuous pathologies: hyperphagia coincident with body weight loss, prompted by elevated metabolism. Our goals were to test the hypotheses that 1) as a stressor, REM-SD would increase CRH gene expression in the hypothalamus and that 2) to account for hyperphagia, hypothalamic gene expression of the orexigen neuropeptide Y (NPY) would increase, but expression of the anorexigen proopiomelanocortin (POMC) would decrease. Enforcement of REM-SD of adult male rats for 20 d with the platform (flowerpot) method led to progressive hyperphagia, increasing to approximately 300% of baseline; body weight steadily declined by approximately 25%. Consistent with changes in food intake patterns, NPY expression rapidly increased in the hypothalamic arcuate nucleus by d 5 of REM-SD, peaking at d 20; by contrast, POMC expression decreased progressively during REM-SD. CRH expression was increased by d 5, both in mRNA and ability to detect neuronal perikaryal staining in paraventricular nucleus with immunocytochemistry, and it remained elevated thereafter with modest declines. Taken together, these data indicate that changes in hypothalamic neuropeptides regulating food intake are altered in a manner consistent with the hyperphagia seen with REM-SD. Changes in CRH, although indicative of REM-SD as a stressor, suggest that the anorexigenic actions of CRH are ineffective (or disabled). Furthermore, changes in NPY and POMC agree with current models of food intake behavior, but they are opposite to their acute effects on peripheral energy metabolism and thermogenesis.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2195
Author(s):  
Ester Arévalo Sureda ◽  
Xuemei Zhao ◽  
Valeria Artuso-Ponte ◽  
Sophie-Charlotte Wall ◽  
Bing Li ◽  
...  

Isoquinoline alkaloids (IQ) exert beneficial antimicrobial and anti-inflammatory effects in livestock. Therefore, we hypothesized that supplementing sows’ diets with IQ during gestation would decrease farrowing stress, affecting the piglets’ development and performance. Sows were divided into: IQ1, supplemented with IQ from gestation day 80 (G80) to weaning; IQ2, supplemented from gestation day 110 (G110) to weaning, and a non-supplemented (NC) group. Sow body weight (BW), feed intake, back-fat thickness and back-muscle thickness were monitored. Cortisol, glucose and insulin were measured in sows’ blood collected 5 d before, during, and after 7 d farrowing. Protein, fat, IgA and IgG were analyzed in the colostrum and milk. Piglets were monitored for weight and diarrhea score, and for ileum histology and gene expression 5 d post-weaning. IQ-supplemented sows lost less BW during lactation. Glucose and insulin levels were lower in the IQ groups compared to NC-sows 5 d before farrowing and had higher levels of protein and IgG in their colostrum. No other differences were observed in sows, nor in the measured parameters in piglets. In conclusion, IQ supplementation affected sows’ metabolism, reducing body weight loss during lactation. Providing IQ to sows from their entrance into the maternity barn might be sufficient to induce these effects. IQ improved colostrum quality, increasing the protein and IgG content, improving passive immunity for piglets.


2017 ◽  
Vol 313 (1) ◽  
pp. E37-E47 ◽  
Author(s):  
Judith N. Gorski ◽  
Michele J. Pachanski ◽  
Joel Mane ◽  
Christopher W. Plummer ◽  
Sarah Souza ◽  
...  

G protein-coupled receptor 40 (GPR40) partial agonists lower glucose through the potentiation of glucose-stimulated insulin secretion, which is believed to provide significant glucose lowering without the weight gain or hypoglycemic risk associated with exogenous insulin or glucose-independent insulin secretagogues. The class of small-molecule GPR40 modulators, known as AgoPAMs (agonist also capable of acting as positive allosteric modulators), differentiate from partial agonists, binding to a distinct site and functioning as full agonists to stimulate the secretion of both insulin and glucagon-like peptide-1 (GLP-1). Here we show that GPR40 AgoPAMs significantly increase active GLP-1 levels and reduce acute and chronic food intake and body weight in diet-induced obese (DIO) mice. These effects of AgoPAM treatment on food intake are novel and required both GPR40 and GLP-1 receptor signaling pathways, as demonstrated in GPR40 and GLP-1 receptor-null mice. Furthermore, weight loss associated with GPR40 AgoPAMs was accompanied by a significant reduction in gastric motility in these DIO mice. Chronic treatment with a GPR40 AgoPAM, in combination with a dipeptidyl peptidase IV inhibitor, synergistically decreased food intake and body weight in the mouse. The effect of GPR40 AgoPAMs on GLP-1 secretion was recapitulated in lean, healthy rhesus macaque demonstrating that the putative mechanism mediating weight loss translates to higher species. Together, our data indicate effects of AgoPAMs that go beyond glucose lowering previously observed with GPR40 partial agonist treatment with additional potential for weight loss.


1982 ◽  
Vol 35 (2) ◽  
pp. 284-293 ◽  
Author(s):  
H S Koopmans ◽  
A Sclafani ◽  
C Fichtner ◽  
P F Aravich

2008 ◽  
Vol 21 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Tizhong Shan ◽  
Yizhen Wang ◽  
Jia Guo ◽  
Xiaona Chu ◽  
Jianxin Liu ◽  
...  

2008 ◽  
Vol 18 (4) ◽  
pp. 415-422 ◽  
Author(s):  
Marianne W. Furnes ◽  
Karin Tømmerås ◽  
Carl-Jørgen Arum ◽  
Chun-Mei Zhao ◽  
Duan Chen

1998 ◽  
Vol 274 (6) ◽  
pp. R1518-R1525 ◽  
Author(s):  
Atsushi Kaibara ◽  
Armin Moshyedi ◽  
Troy Auffenberg ◽  
Amer Abouhamze ◽  
Edward M. Copeland ◽  
...  

The ob gene product leptin is known to produce anorexia and loss of body fat when chronically administered to both lean and genetically obese mice. The current study was undertaken to examine whether administration of recombinant leptin in quantities sufficient to produce decreases in food intake and body weight and alterations in body composition would elicit either an hepatic acute phase protein response or preferential loss of carcass lean tissue. Mice were administered increasing quantities of recombinant human leptin or human tumor necrosis factor-α as a positive control. Although leptin (at 10 mg/kg body wt) produced significant anorexia and weight loss (both P < 0.05), human leptin administration did not appear to induce an hepatic acute phase protein response in either lean or genetically obese mice, as determined by protein synthetic rates in the liver or changes in the plasma concentration of the murine acute phase protein reactants, amyloid A, amyloid P, or seromucoid (α1-acid glycoprotein). In addition, human leptin administration did not induce a loss of fat-free dry mass (protein) in lean or obese animals. The findings suggest that at doses adequate to alter food intake and body weight leptin is not a significant inducer of the hepatic acute phase response nor does leptin promote the preferential loss of somatic protein characteristic of a chronic inflammatory process.


Sign in / Sign up

Export Citation Format

Share Document