Copper modulates heart mitochondrial H2O2 emission differently during fatty acid and pyruvate oxidation

Author(s):  
Michael O. Isei ◽  
Don Stevens ◽  
Collins Kamunde
1972 ◽  
Vol 50 (9) ◽  
pp. 963-968 ◽  
Author(s):  
C. H. Lin ◽  
I. B. Fritz

Measurements are reported on the rates of oxidation of 14C-1-palmitate, 14C-1-pyruvate, and 14C-2-pyruvate by cell suspensions obtained from testes of normal rats of varying ages and from hypophysectomized regressed rats. Highest conversion rates of labeled pyruvate to CO2 were observed in testes from 24-day-old rats, in which all germinal cells except spermatids and spermatozoa were present. Cell suspensions from testes of adult rats, containing predominantly spermatids, had relatively low rates of palmitate and pyruvate oxidation. These rates were increased in cell suspensions from testes of regressed hypophysectomized rats towards those observed in testicular cell preparations from immature rats. The predominant cell types in testes from hypophysectomized, regressed rats are spermatogonia and early spermatocytes, although early stage spermatids are also present in lesser numbers. The ketogenic enzyme capacity was greatest in particulate preparations obtained from testes of normal 14-day-old rats, in which the predominant germinal cells present are spermatogonia. The activity of succinyl-CoA: 3-oxoacid CoA-transferase was also highest in these preparations. Cell suspensions from testes of 14-day-old rats incorporated significant amounts of labeled palmitate and pyruvate into acetoacetate, whereas cell suspensions from testes of other groups of animals examined did not. The data are discussed in relation to factors controlling rates of fatty acid oxidation in various germinal epithelial cells. It is concluded that spermatocytes have highest rates of pyruvate oxidation, but that both spermatogonia and spermatocytes have relatively high rates of palmitate oxidation. Since spermatogonia also were shown to contain the relatively highest ketogenic enzymic capacity, and since these cells had previously been observed to have lowest levels of carnitine acetyltransferase (CAT), it may be deduced that high CAT activity is not required for fatty acid oxidation or ketogenesis by testicular cells.


2019 ◽  
Vol 132 (13) ◽  
pp. jcs228999 ◽  
Author(s):  
Josephine Bradley ◽  
Iestyn Pope ◽  
Yisu Wang ◽  
Wolfgang Langbein ◽  
Paola Borri ◽  
...  

Cell Reports ◽  
2021 ◽  
Vol 34 (8) ◽  
pp. 108767 ◽  
Author(s):  
Xinxin Song ◽  
Jiao Liu ◽  
Feimei Kuang ◽  
Xin Chen ◽  
Herbert J. Zeh ◽  
...  

2012 ◽  
Vol 302 (3) ◽  
pp. R373-R384 ◽  
Author(s):  
Daisuke Hoshino ◽  
Yuko Yoshida ◽  
Graham P. Holloway ◽  
James Lally ◽  
Hideo Hatta ◽  
...  

Clenbuterol, a β2-adrenergic agonist, reduces mitochondrial content and enzyme activities in skeletal muscle, but the mechanism involved has yet to be identified. We examined whether clenbuterol-induced changes in the muscles' metabolic profile and the intrinsic capacity of mitochondria to oxidize substrates are associated with reductions in the nuclear receptor coactivator PGC-1 alpha and/or an increase in the nuclear corepressor RIP140. In rats, clenbuterol was provided in the drinking water (30 mg/l). In 3 wk, this increased body (8%) and muscle weights (12–17%). In red (R) and white (W) muscles, clenbuterol induced reductions in mitochondrial content (citrate synthase: R, 27%; W, 52%; cytochrome- c oxidase: R, 24%; W, 34%), proteins involved in fatty acid transport (fatty acid translocase/CD36: R, 36%; W, 35%) and oxidation [β-hydroxyacyl CoA dehydrogenase (β-HAD): R, 33%; W, 62%], glucose transport (GLUT4: R, 8%; W, 13%), lactate transport monocarboxylate transporter (MCT1: R, 61%; W, 37%), and pyruvate oxidation (PDHE1α, R, 18%; W, 12%). Concurrently, only red muscle lactate dehydrogenase activity (25%) and MCT4 (31%) were increased. Palmitate oxidation was reduced in subsarcolemmal (SS) (R, 30%; W, 52%) and intermyofibrillar (IMF) mitochondria (R, 17%; W, 44%) along with reductions in β-HAD activity (SS: R, 17%; W, 51%; IMF: R, 20%; W, 57%). Pyruvate oxidation was only reduced in SS mitochondria (R, 20%; W, 28%), but this was not attributable solely to PDHE1α, which was reduced in both SS (R, 21%; W, 20%) and IMF mitochondria (R, 15%; W, 43%). These extensive metabolic changes induced by clenbuterol were associated with reductions in PGC-1α (R, 37%; W, 32%) and increases in RIP140 (R, 23%; W, 21%). This is the first evidence that clenbuterol appears to exert its metabolic effects via simultaneous and reciprocal changes in the nuclear receptor coactivator PGC-1α and the nuclear corepressor RIP140.


Author(s):  
Kenneth H. Downing ◽  
Robert M. Glaeser

The structural damage of molecules irradiated by electrons is generally considered to occur in two steps. The direct result of inelastic scattering events is the disruption of covalent bonds. Following changes in bond structure, movement of the constituent atoms produces permanent distortions of the molecules. Since at least the second step should show a strong temperature dependence, it was to be expected that cooling a specimen should extend its lifetime in the electron beam. This result has been found in a large number of experiments, but the degree to which cooling the specimen enhances its resistance to radiation damage has been found to vary widely with specimen types.


Sign in / Sign up

Export Citation Format

Share Document