nuclear receptor coactivator
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 44)

H-INDEX

37
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Fengju Jia ◽  
Hongxia Liu ◽  
Shan Kang

Coronavirus disease 2019 (COVID-19) is a global pandemic that has caused widespread loss of life. Notably, in this disease, severe inflammatory reactions characterized by cytokine storms are caused by severe acute respiratory syndrome coronavirus 2. The cytokine storms may promote hyper-ferritinemia which can further intensify the inflammation. Moreover, elevated ferritin levels trigger nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy, in which ferritin is degraded and iron is released. Excess iron released from ferritinophagy can promote ferroptosis and cellular damage. Therefore, we propose that NCOA4-mediated ferritinophagy can be targeted to limit the ferroptosis and prevent the multi-organ damage and severity in COVID-19 patients.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michiko Shimoda ◽  
Yuanzhi Lyu ◽  
Kang-Hsin Wang ◽  
Ashish Kumar ◽  
Hiroki Miura ◽  
...  

AbstractIn herpesvirus replicating cells, host cell gene transcription is frequently down-regulated because important transcriptional apparatuses are appropriated by viral transcription factors. Here, we show a small peptide derived from the Kaposi’s sarcoma-associated herpesvirus transactivator (K-Rta) sequence, which attenuates cellular MYC expression, reduces cell proliferation, and selectively kills cancer cell lines in both tissue culture and a xenograft tumor mouse model. Mechanistically, the peptide functions as a decoy to block the recruitment of coactivator complexes consisting of Nuclear receptor coactivator 2 (NCOA2), p300, and SWI/SNF proteins to the MYC promoter in primary effusion lymphoma cells. Thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM seq) with target-transcriptional analyses further confirm that the viral peptide directly attenuates MYC and MYC-target gene expression. This study thus provides a unique tool to control MYC activation, which may be used as a therapeutic payload to treat MYC-dependent diseases such as cancers and autoimmune diseases.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009820
Author(s):  
Hataf Khan ◽  
Helena Winstone ◽  
Jose M. Jimenez-Guardeño ◽  
Carl Graham ◽  
Katie J. Doores ◽  
...  

Interferons play a critical role in regulating host immune responses to SARS-CoV-2, but the interferon (IFN)-stimulated gene (ISG) effectors that inhibit SARS-CoV-2 are not well characterized. The IFN-inducible short isoform of human nuclear receptor coactivator 7 (NCOA7) inhibits endocytic virus entry, interacts with the vacuolar ATPase, and promotes endo-lysosomal vesicle acidification and lysosomal protease activity. Here, we used ectopic expression and gene knockout to demonstrate that NCOA7 inhibits infection by SARS-CoV-2 as well as by lentivirus particles pseudotyped with SARS-CoV-2 Spike in lung epithelial cells. Infection with the highly pathogenic, SARS-CoV-1 and MERS-CoV, or seasonal, HCoV-229E and HCoV-NL63, coronavirus Spike-pseudotyped viruses was also inhibited by NCOA7. Importantly, either overexpression of TMPRSS2, which promotes plasma membrane fusion versus endosomal fusion of SARS-CoV-2, or removal of Spike’s polybasic furin cleavage site rendered SARS-CoV-2 less sensitive to NCOA7 restriction. Collectively, our data indicate that furin cleavage sensitizes SARS-CoV-2 Spike to the antiviral consequences of endosomal acidification by NCOA7, and suggest that the acquisition of furin cleavage may have favoured the co-option of cell surface TMPRSS proteases as a strategy to evade the suppressive effects of IFN-induced endo-lysosomal dysregulation on virus infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. F. Eaton ◽  
D. Brown ◽  
M. Merkulova

AbstractWe recently found that nuclear receptor coactivator 7 (Ncoa7) and Oxr1 interact with the proton-pumping V-ATPase. Ncoa7 and Oxr1 belong to a group of proteins playing a role in the oxidative stress response, that contain the conserved “TLDc” domain. Here we asked if the three other proteins in this family, i.e., Tbc1d24, Tldc1 and Tldc2 also interact with the V-ATPase and if the TLDc domains are involved in all these interactions. By co-immunoprecipitation, endogenous kidney Tbc1d24 (and Ncoa7 and Oxr1) and overexpressed Tldc1 and Tldc2, all interacted with the V-ATPase. In addition, purified TLDc domains of Ncoa7, Oxr1 and Tldc2 (but not Tbc1d24 or Tldc1) interacted with V-ATPase in GST pull-downs. At the amino acid level, point mutations G815A, G845A and G896A in conserved regions of the Ncoa7 TLDc domain abolished interaction with the V-ATPase, and S817A, L926A and E938A mutations resulted in decreased interaction. Furthermore, poly-E motifs upstream of the TLDc domain in Ncoa7 and Tldc2 show a (nonsignificant) trend towards enhancing the interaction with V-ATPase. Our principal finding is that all five members of the TLDc family of proteins interact with the V-ATPase. We conclude that the TLDc motif defines a new class of V-ATPase interacting regulatory proteins.


2021 ◽  
Author(s):  
Amity Fenn Eaton ◽  
Dennis Brown ◽  
Maria Merkulova

Abstract We recently found that nuclear receptor coactivator 7 (Ncoa7) and Oxr1 interact with the proton-pumping V-ATPase. Ncoa7 and Oxr1 belong to a group of proteins playing a role in the oxidative stress response, that contain the conserved “TLDc” domain. Here we asked if the three other proteins in this family, i.e., Tbc1d24, Tldc1 and Tldc2 also interact with the V-ATPase and if the TLDc domains are involved in all these interactions. By co-immunoprecipitation, endogenous kidney Tbc1d24 (and Ncoa7 and Oxr1) and overexpressed Tldc1 and Tldc2, all interacted with the V-ATPase. In addition, the purified TLDc domains of Ncoa7, Oxr1 and Tldc2 (but not Tbc1d24 or Tldc1) interacted with V-ATPase in GST pull-downs. At the amino acid level, the point mutations G815A, G845A and G896A in conserved regions of the Ncoa7 TLDc domain abolished interaction with the V-ATPase, and S817A, L926A and E938A mutations resulted in decreased interaction. Furthermore, poly-E motifs present upstream of the TLDc domain in Ncoa7 and Tldc2 enhancedshow a (nonsignificant) trend towards enhancing the interaction with V-ATPase. Our principal finding is that all five members of the TLDc family of proteins interact with the V-ATPase. We conclude that the TLDc motif defines a new class of V-ATPase interacting regulatory proteins.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Longlong Li ◽  
Hao Li ◽  
Yongli Li ◽  
Jiankang Feng ◽  
Deng Guan ◽  
...  

Reactive oxygen species (ROS) production is involved in the mechanism of action of a number of drugs, but the biological effects of ROS remain to be clarified. Furthermore, ferroptosis involves iron-dependent ROS production that may be derived from ferritinophagy; however, the association between ferroptosis and ferritinophagy has not been fully established. The present study demonstrated that dithiocarbamate derivatives (iron chelators) exhibited antineoplastic properties involving ferritinophagy induction, but whether the underlying mechanisms involved ferroptosis was unknown. To gain insight into the underlying mechanism, a dithiocarbamate derivative, 2-pyridylhydrazone dithiocarbamate s-acetic acid (PdtaA), was prepared. An MTT assay demonstrated that PdtaA inhibited proliferation involving ROS production ( I C 50 = 23.0 ± 1.5  μM for HepG2 cells). A preliminary mechanistic study revealed that PdtaA induced both apoptosis and cell cycle arrest. Notably, PdtaA also induced ferroptosis via downregulation of GPx4 and xCT, which was first reported for a dithiocarbamate derivative. Moreover, these cellular events were associated with ROS production. To explore the origin of ROS, expression of the ferritinophagy-related genes, ferritin, and nuclear receptor coactivator (NCOA4) were measured. Immunofluorescence and western blotting analysis indicated that PdtaA-induced ferritinophagy may contribute to ROS production. To investigate the role of ferritinophagy, autophagy inhibitor 3-methyladenin or genetic knockdown of NCOA4 was employed to inhibit ferritinophagy, which significantly neutralized the action of PdtaA in both apoptosis and ferroptosis. Taken together, PdtaA-induced cell cycle arrest, apoptosis, and ferroptosis were associated with ferritinophagy.


2021 ◽  
pp. 074823372110485
Author(s):  
Yu Hu ◽  
Lei Wu ◽  
San-Qiao Yang ◽  
Hai-Jun Wei ◽  
Chun-Yan Wang ◽  
...  

Formaldehyde (FA) causes neurotoxicity and contributes to the occurrence of neurodegenerative diseases. However, the mechanism of FA-induced neurotoxicity has not been fully elucidated. Ferritinophagy, an autophagy process of ferritin mediated by the nuclear receptor coactivator 4 (NCOA4), is a potential mechanism of neurotoxicity. In this study, we explored whether ferritinophagy is associated with the neurotoxicity of FA. Our results showed that FA (50, 100, 200 μM; 24 h) exposure upregulated ferritinophagy in the mouse hippocampal neuronal HT22 cells, which was evidenced by the upregulated autophagic flux, the increased colocalizations of NCOA4 with ferritin heavy chain (FTH1) and NCOA4 with microtubule-associated protein 1 light chain-3B (LC3B), the augmented expression of NCOA4, and the reduced content of FTH1. We also found that FA (0.1, 1, and 10 μmol, i.c.v., 7d) administration boosted ferritinophagy in the hippocampus of Sprague-Dawley (SD) rats, which was demonstrated by the accumulated autophagosomes, the increased expressions of LC3II/I and NCOA4, and the decreased contents of p62 and FTH1 in the hippocampus. Further, we confirmed that inhibition of ferritinophagy by silencing the expression of NCOA4 decreased FA-induced toxic damage in HT22 cells. These results indicated that FA induces neurotoxicity by promoting ferritinophagy. Our findings suggest a potential mechanism insight into the FA-induced neurotoxicity, which in turn provides a new thought for the treatment of FA-related neurodegenerative diseases.


2021 ◽  
Author(s):  
Michiko Shimoda ◽  
Yuanzhi Lyu ◽  
Kang-Hsin Wang ◽  
Ashish Kumar ◽  
Hiroki Miura ◽  
...  

Abstract In herpesvirus replicating cells, host cell gene transcription is frequently down-regulated because important transcriptional apparatuses are appropriated by viral transcription factors. Here, we identified a small peptide derived from the Kaposi's sarcoma-associated herpesvirus transactivator (K-Rta) sequence, which attenuates cellular c-MYC expression, reduces cell proliferation, and selectively kills cancer cell lines in both tissue culture and a xenograft tumor mouse model. Mechanistically, the peptide functions as a decoy to block the recruitment of coactivator complexes consisting of Nuclear receptor coactivator 2 (NCOA2), p300, and SWI/SNF proteins to the MYC promoter in primary effusion lymphoma cells. Thiol(SH)-linked alkylation for the metabolic sequencing of RNA (​SLAM seq) with target-transcriptional analyses further confirmed that the viral peptide directly attenuates MYC and MYC-target gene expression. This study thus provides a unique tool to control MYC activation, which may have significant potential as a therapeutic payload to treat MYC-dependent diseases such as cancers and autoimmune diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wenyuan Li ◽  
Wei Li ◽  
Yao Wang ◽  
Yan Leng ◽  
Zhongyuan Xia

AbstractThe purpose of this study was to investigate whether inhibition of DNA (cytosine-5)-methyltransferase 1 (DNMT-1) alleviated ferroptosis through nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy during diabetes myocardial (DM) ischemia/reperfusion (I/R) injury (IRI). Rat DM + sham (DS), I/R, and DM + I/R (DIR), H9c2 cell high glucose (HG), hypoxia reoxygenation (H/R), and high-glucose hypoxia reoxygenation (HH/R) models were established. DNMT-1 inhibitor 5-Aza-2’-deoxycytidine (5-aza-CdR) was administered to rat and cell models. The protein level of DNMT-1, NCOA4, FTH, GPX4, Beclin-1, and P62 was detected by western blotting. Compared with normal sham (NS) group, myocardial tissue was injured in DS and I/R models. The level of DNMT-1, NCOA4, and ferroptosis was increased. Moreover, the cell injury was more serious in rat DIR or HH/R model. 5-Aza-CdR could reduce NCOA4-mediated ferritinophagy and myocardial injury in DIR and HH/R models. Moreover, the siRNA for NCOA4 could also reduce the level of ferritinophagy and cell injury in HH/R model. 5-Aza-CdR enhanced the protective effect for NCOA4-siRNA in the process of cell injury. Inhibition of DNMT-1 could reduce ferroptosis during DIR, which the NCOA4-mediated ferritinophagy might be regulated.


Sign in / Sign up

Export Citation Format

Share Document