Cardiovascular Drug Toxicity

2021 ◽  
Vol 37 (3) ◽  
pp. 563-576
Author(s):  
Maude St-Onge
2020 ◽  
Author(s):  
Keyword(s):  

Author(s):  
E. K. Rakhmatullin ◽  
O. D. Sklyarov

The article presents the results of a study of the "Bisolbi" drug toxicity (powder of light ash color, poorly soluble in water). When it is mixed with water it forms a suspension of particles that settle rapidly. Values of acute drug toxicity were determined on rats. We studied groups of six animals of the same sex, as well as similar control ones. The "Bisolbi" drug was injected to white rats intragastrically, males weighing 310 ... 320 g in doses of 2500 and 2740 mg / kg. Each dose was used in six animals; distilled water (3 ml) was used for the controls. The LD50 was calculated by the probit analysis method proposed by Litchfield and Wilcoxon modified by Z. Roth. When administered orally, an atraumatic metal probe was immersed in the stomach. Within 14 days monitored the overall health status and behavior of animals, the manifestation or absence of symptoms of intoxication; noted the features of feed and water ingestion, assessed the condition of the coat, physiological functions. Then groups of experimental rats were euthanized and pathomorphologically examined. We studied the effect of "Bisolbi" with repeated introduction and on not purebred dogs. Two groups of 3-4 years of age were completed with an average initial body weight of 13.63 ... 15.11 kg. Before use, the additive was thoroughly mixed with feed. The drug was injected during 31 days at a dose of 0.5 g / kg. Dogs of the control group (three) were fed wheat flour. After 15 and 31 days in laboratory animals in order to characterize the general condition in the blood, the amount of protein, urea, glucose, creatinine, cholesterol were determined. Based on studies it was found that the drug daily application by animals, is low toxic and safe, does not provoke the development of pathological reactions. According to the Hodge and Sterner classification "Bisolbi" can be attributed to the 6th class of toxicity - relatively harmless. Accordingto GOST 12.1.007-76 LD50 of the drug is more than 151 mg / kg, but less than 5000 mg / kg it is the 3rd hazard class (moderately hazardous).


2020 ◽  
Vol 300 ◽  
pp. 221-225 ◽  
Author(s):  
Mai Vu ◽  
Marjaana Koponen ◽  
Heidi Taipale ◽  
Antti Tanskanen ◽  
Jari Tiihonen ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Montané ◽  
Karolina Matulewicz ◽  
Karolina Balik ◽  
Paulina Modrakowska ◽  
Marcin Łuczak ◽  
...  

Abstract Different nanomedicine devices that were developed during the recent years can be suitable candidates for their application in the treatment of various deadly diseases such as cancer. From all the explored devices, the nanoencapsulation of several anticancer medicines is a very promising approach to overcome some drawbacks of traditional medicines: administered dose of the drugs, drug toxicity, low solubility of drugs, uncontrolled drug delivery, resistance offered by the physiological barriers in the body to drugs, among others. In this chapter, the most important and recent progress in the encapsulation of anticancer medicines is examined: methods of preparation of distinct nanoparticles (inorganic nanoparticles, dendrimers, biopolymeric nanoparticles, polymeric micelles, liposomes, polymersomes, carbon nanotubes, quantum dots, and hybrid nanoparticles), drug loading and drug release mechanisms. Furthermore, the possible applications in cancer prevention, diagnosis, and cancer therapy of some of these nanoparticles have been highlighted.


Sign in / Sign up

Export Citation Format

Share Document