Apparent calcium spark properties and fast-scanning 2D confocal imaging modalities

Cell Calcium ◽  
2021 ◽  
Vol 93 ◽  
pp. 102303
Author(s):  
Qinghai Tian ◽  
Peter Lipp
Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


Author(s):  
W.G. Wier

A fundamentally new understanding of cardiac excitation-contraction (E-C) coupling is being developed from recent experimental work using confocal microscopy of single isolated heart cells. In particular, the transient change in intracellular free calcium ion concentration ([Ca2+]i transient) that activates muscle contraction is now viewed as resulting from the spatial and temporal summation of small (∼ 8 μm3), subcellular, stereotyped ‘local [Ca2+]i-transients' or, as they have been called, ‘calcium sparks'. This new understanding may be called ‘local control of E-C coupling'. The relevance to normal heart cell function of ‘local control, theory and the recent confocal data on spontaneous Ca2+ ‘sparks', and on electrically evoked local [Ca2+]i-transients has been unknown however, because the previous studies were all conducted on slack, internally perfused, single, enzymatically dissociated cardiac cells, at room temperature, usually with Cs+ replacing K+, and often in the presence of Ca2-channel blockers. The present work was undertaken to establish whether or not the concepts derived from these studies are in fact relevant to normal cardiac tissue under physiological conditions, by attempting to record local [Ca2+]i-transients, sparks (and Ca2+ waves) in intact, multi-cellular cardiac tissue.


1988 ◽  
Vol 21 (2) ◽  
pp. 219-244
Author(s):  
Anton N. Hasso ◽  
John A. Ledington

VASA ◽  
2018 ◽  
Vol 47 (5) ◽  
pp. 361-375 ◽  
Author(s):  
Harold Goerne ◽  
Abhishek Chaturvedi ◽  
Sasan Partovi ◽  
Prabhakar Rajiah

Abstract. Although pulmonary embolism is the most common abnormality of the pulmonary artery, there is a broad spectrum of other congenital and acquired pulmonary arterial abnormalities. Multiple imaging modalities are now available to evaluate these abnormalities of the pulmonary arteries. CT and MRI are the most commonly used cross-sectional imaging modalities that provide comprehensive information on several aspects of these abnormalities, including morphology, function, risk-stratification and therapy-monitoring. In this article, we review the role of state-of-the-art pulmonary arterial imaging in the evaluation of non-thromboembolic disorders of pulmonary artery.


VASA ◽  
2018 ◽  
Vol 47 (5) ◽  
pp. 345-359 ◽  
Author(s):  
Yuki Tanabe ◽  
Luis Landeras ◽  
Abed Ghandour ◽  
Sasan Partovi ◽  
Prabhakar Rajiah

Abstract. The pulmonary arteries are affected by a variety of congenital and acquired abnormalities. Multiple state-of-the art imaging modalities are available to evaluate these pulmonary arterial abnormalities, including computed tomography (CT), magnetic resonance imaging (MRI), echocardiography, nuclear medicine imaging and catheter pulmonary angiography. In part one of this two-part series on state-of-the art pulmonary arterial imaging, we review these imaging modalities, focusing particularly on CT and MRI. We also review the utility of these imaging modalities in the evaluation of pulmonary thromboembolism.


2012 ◽  
Vol 25 (01) ◽  
Author(s):  
XW Cui ◽  
A Ignee ◽  
B Braden ◽  
M Woenckhaus ◽  
CF Dietrich

1999 ◽  
Vol 82 (S 01) ◽  
pp. 171-175 ◽  
Author(s):  
D. Ebert ◽  
M. Langer ◽  
P. Uhrmeister

SummaryThe endovascular treatment of abdominal aortic aneurysms has generated a great deal of interest since the early 1990s, and many different devices are currently available. The procedure of endovascular repair has been evaluated in many institutions and the different devices are compared. The first results were encouraging, but complications like endoleak, dislocation or thrombosis of the graft occurred. By the available devices the stent application is only promising, if the known exclusion criteria are strictly respected. Therefore a careful preinterventional assessment of the patient by different imaging modalities is necessary. As the available results up to now are preliminary and the durability of the devices has to be controlled, multicenter studies are required to improve the devices and observe their long- term success in the exclusion of abdominal aortic aneurysms.


Sign in / Sign up

Export Citation Format

Share Document