heart cell
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 24)

H-INDEX

42
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Daniel I Bromage ◽  
Silvia Cellone Trevelin ◽  
Josef Huntington ◽  
Victoria Yang ◽  
Ananya Muthukumar ◽  
...  

Objectives: We aimed to investigate the contribution of the transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2) to the inflammatory response after experimental myocardial infarction (MI. Background: There is compelling evidence implicating dysregulated inflammation in the mechanism of ventricular remodeling and heart failure (HF) after MI. The transcription factor Nrf2 (encoded by Nfe2l2) is a promising target in this context. It impedes transcriptional upregulation of pro-inflammatory cytokines and is anti-inflammatory in various murine models. Methods: We subjected Nrf2-/- mice and wild type (WT) controls to permanent left coronary artery (LCA) ligation. The inflammatory response was investigated with fluorescence-activated cell sorting (FACS) analysis of peripheral blood and heart cell suspensions, together with qRT-PCR of infarcted tissue for chemokines and their receptors. To investigate whether Nrf2-mediated transcription is a dedicated function of leukocytes, we interrogated publicly available RNA-sequencing (RNA-seq) data from mouse hearts after permanent LCA ligation for Nrf2-regulated gene (NRG) expression. Results: FACS analysis demonstrated a profoundly inflamed phenotype in the hearts of global Nrf2-/- mice as compared to WT mice after MI. Moreover, infarcted tissue from Nrf2-/- mice displayed higher expression of inflammatory cytokines, chemokines, and their receptors, including IL6, Ccl2, and Cxcr4. RNA-seq analysis showed upregulated NRG expression in WT mice after MI compared to untreated mice, which was significantly higher in bioinformatically isolated CCR2+ cells. Conclusions: Taken together, the results suggest that Nrf2 signalling in leukocytes, and possibly CCR2+ monocyte-derived cardiac resident macrophages, may be potential targets to prevent post-MI ventricular remodeling.


Aquaculture ◽  
2022 ◽  
Vol 547 ◽  
pp. 737427
Author(s):  
Weiwei Zeng ◽  
Hanxu Dong ◽  
Xiaoyu Chen ◽  
Sven M. Bergmann ◽  
Ying Yang ◽  
...  

2021 ◽  
pp. 026119292110525
Author(s):  
Anaguiven Avalos-Soriano ◽  
Alejandra García-Gasca ◽  
Beatriz Yáñez-Rivera

Two cell lines derived from the brain and heart of a Pacific white snook specimen ( Centropomus viridis) were developed and evaluated in terms of their responsiveness to glyphosate-induced cytotoxicity. The cells were grown in Leibovitz-15 (L-15) medium supplemented with 10% fetal bovine serum (FBS) and were passaged 36 times. Growth was tested at different concentrations of FBS (5, 10 and 20%) at 27°C. The cell lines were cryopreserved at different passages and were successfully thawed, with a survival rate greater than 80% without detectable contamination. At passage 36, the cells were used to assess the deleterious effects of glyphosate, and cell proliferation was measured by direct counting and with the MTT assay. Similar LC50 values were obtained with both methods. Although the principles behind these two assessment methods differ, our results show that both are suitable for evaluating glyphosate toxicity. In addition, heart- and brain-derived cells showed similar sensitivity, suggesting that the same mode of action might be responsible for the toxicity of glyphosate at the cellular level. The newly developed Pacific white snook brain and heart cell lines could be useful to investigate cellular and molecular mechanisms of toxicity, satisfying the need to reduce the use of animals in experiments. Glyphosate-related toxicological data obtained in the present study will allow us to continue investigating the effects of this herbicide directly on brain and heart fish cells since similar studies have only been carried out on either live organisms or on human cell lines such as neuroblastoma, which are immortalised by oncogenes or similar.


RNA Biology ◽  
2021 ◽  
pp. 1-15
Author(s):  
Na-Jung Kim ◽  
Kang-Hoon Lee ◽  
YeonSung Son ◽  
A-Reum Nam ◽  
Eun-Hye Moon ◽  
...  

Author(s):  
Xingyu Zhang ◽  
Yunqian Gao ◽  
Xiaoping Zhang ◽  
Xiaoqing Zhang ◽  
Ying Xiang ◽  
...  

Heart development requires robust gene regulation, and the related disruption could lead to congenital heart disease (CHD). To gain insights into the regulation of gene expression in CHD, we obtained the expression profiles of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in 22 heart tissue samples with tetralogy of Fallot (TOF) through strand-specific transcriptomic analysis. Using a causal inference framework based on the expression correlations and validated microRNA (miRNA)–lncRNA–mRNA evidences, we constructed the competing endogenous RNA (ceRNA)-mediated network driven by lncRNAs. Four lncRNAs (FGD5-AS1, lnc-GNB4-1, lnc-PDK3-1, and lnc-SAMD5-1) were identified as hub lncRNAs in the network. FGD5-AS1 was selected for further study since all its targets were CHD-related genes (NRAS, PTEN, and SMAD4). Both FGD5-AS1 and SMAD4 could bind with hsa-miR-421, which has been validated using dual-luciferase reporter assays. Knockdown of FGD5-AS1 not only significantly reduced PTEN and SMAD4 expression in HEK 293 and the fetal heart cell line (CCC-HEH-2) but also increased the transcription of its interacted miRNAs in a cell-specific way. Besides ceRNA mechanism, RNAseq and ATACseq results showed that FGD5-AS1 might play repression roles in heart development by transcriptionally regulating CHD-related genes. In conclusion, we identified a ceRNA network driven by lncRNAs in heart tissues of TOF patients. Furthermore, we proved that FGD5-AS1, one hub lncRNA in the TOF heart ceRNA network, regulates multiple genes transcriptionally and epigenetically.


2021 ◽  
Vol Volume 15 ◽  
pp. 2047-2058
Author(s):  
Jun Wang ◽  
Yulin Zhai ◽  
Mingguang Ou ◽  
Yunfeng Bian ◽  
Chenglong Tang ◽  
...  

2021 ◽  
Vol 10 (8) ◽  
Author(s):  
Junlang Li ◽  
Shiqi Hu ◽  
Dashuai Zhu ◽  
Ke Huang ◽  
Xuan Mei ◽  
...  

Abstract In the past decades, numerous preclinical studies and several clinical trials have evidenced the feasibility of cell transplantation in treating heart diseases. Over the years, different delivery routes of cell therapy have emerged and broadened the width of the field. However, a common hurdle is shared by all current delivery routes: low cell retention. A myriad of studies confirm that cell retention plays a crucial role in the success of cell‐mediated cardiac repair. It is important for any delivery route to maintain donor cells in the recipient heart for enough time to not only proliferate by themselves, but also to send paracrine signals to surrounding damaged heart cells and repair them. In this review, we first undertake an in‐depth study of primary theories of cell loss, including low efficiency in cell injection, “washout” effects, and cell death, and then organize the literature from the past decade that focuses on cell transplantation to the heart using various cell delivery routes, including intracoronary injection, systemic intravenous injection, retrograde coronary venous injection, and intramyocardial injection. In addition to a recapitulation of these approaches, we also clearly evaluate their strengths and weaknesses. Furthermore, we conduct comparative research on the cell retention rate and functional outcomes of these delivery routes. Finally, we extend our discussion to state‐of‐the‐art bioengineering techniques that enhance cell retention, as well as alternative delivery routes, such as intrapericardial delivery. A combination of these novel strategies and more accurate assessment methods will help to address the hurdle of low cell retention and boost the efficacy of cell transplantation to the heart.


2021 ◽  
pp. 151-190
Author(s):  
Yazan M. N. Kalou ◽  
Ammar S. A. Hashemi ◽  
Rayan M. Joudeh ◽  
Beatrice Aramini ◽  
Khawaja Husnain Haider

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Suvi Linna Kuosmanen ◽  
Eloi Schmauch ◽  
Kyriakitsa Galani ◽  
Carles Boix ◽  
Yongjin P Park ◽  
...  

Genome-wide association studies have uncovered over 200 genetic loci underlying coronary artery disease (CAD), providing great hope for a deeper understanding of the causal mechanisms leading to this disease. However, in order to understand CAD at the molecular level, it is necessary to uncover cell-type-specific circuits and to use these circuits to dissect driver variants, genes, pathways, and cell types, in normal and diseased tissues. Here, we provide the most detailed single-cell dissection of human heart cell types, using cardiac biopsies collected during open-heart surgery from healthy, CAD, and CAD-related heart failure donors, and profiling both transcriptional (scRNA-seq) and epigenomic (scATAC-seq) changes. Using this approach, we identify 12 major heart cell types, including typical cardiovascular cells (cardiomyocytes, endothelial cells, fibroblasts), rarer cell types (B cells, neurons, Schwann cells), and previously-unrecognized layer-specific epithelial and endothelial cell types. We define markers for each cell type, providing the first extensive reference set for the living human heart. In addition, we define differential gene expression patterns in CAD relative to control samples, revealing substantial differences in cell-type-specific expression of disease-related genes, emphasizing, for example, the importance of the vascular endothelium in the pathogenesis of CAD. Strikingly, further clustering of the cell types based on specific subtypes revealed important differences in their expression patterns of disease-associated genes. These changes enrich in known CAD genetic loci, enabling us to recognize their likely target genes from scRNA-seq expression changes, candidate driver variants based on scATAC-seq localization and differential DNA accessibility, and candidate upstream regulators based on their enriched motif occurrences in scATAC loci. Overall, our results highlight the relevance and potential of single-cell transcriptional and epigenomic analyses to gain new biological insights into cardiovascular disease, and to recognize novel therapeutic target genes, pathways, and the cell types where they act.


Sign in / Sign up

Export Citation Format

Share Document