Relationship between flow structure and transfer coefficients in fast fluidized beds

2010 ◽  
Vol 157 (2-3) ◽  
pp. 509-519 ◽  
Author(s):  
Baolin Hou ◽  
Hongzhong Li
1999 ◽  
Author(s):  
Kal R. Sharma

Abstract Experimentally measured values for the minimum fluidization velocities and time averaged local surface heat transfer coefficients are provided for 16 different cases of fluidizing conditions for gas-solid dense fluidized beds. Semi-empirical Correlations for the minimum fluidization velocity and the heat transfer coefficient at minimum fluidization velocities are provided. The implications of the Peclet number dependence in terms of diffusion and convection is discussed.


2019 ◽  
Vol 128 ◽  
pp. 01003 ◽  
Author(s):  
Jaroslaw Krzywanski ◽  
Karolina Grabowska ◽  
Marcin Sosnowski ◽  
Anna Zylka ◽  
Anna Kulakowska ◽  
...  

An innovative idea, shown in the paper constitutes in the use of the fluidized bed of sorbent, instead of the conventional, fixed-bed, commonly used in the adsorption chillers. Bed–to–wall heat transfer coefficients for fixed and fluidized beds of adsorbent are determined. Sorbent particles diameters and velocities of fluidizing gas are discussed in the study. The calculations confirmed, that the bed–to–wall heat transfer coefficient in the fluidized bed of adsorbent is muchhigher than that in a conventional bed.


2021 ◽  
Vol 379 ◽  
pp. 223-230
Author(s):  
Xiaoyang Wei ◽  
Jiangshan Liu ◽  
Jesse Zhu

Author(s):  
Ting Wang ◽  
Mingjie Lin ◽  
Ronald S. Bunker

Experimental studies on heat transfer and flow structure in confined impingement jets were performed. The objective of this study was to investigate the detailed heat transfer coefficient distribution on the jet impingement target surface and flow structure in the confined cavity. The distribution of heat transfer coefficients on the target surface was obtained by employing the transient liquid crystal method coupled with a 3-D inverse transient conduction scheme under Reynolds number ranging from 1039 to 5175. The results show that the average heat transfer coefficients increased linearly with the Reynolds number as Nu = 0.00304 Pr0.42Re. The effects of cross flow on heat transfer were investigated. The flow structure were analyzed to gain insight into convective heat transfer behavior.


1994 ◽  
Vol 116 (3) ◽  
pp. 652-659 ◽  
Author(s):  
G. Flamant ◽  
J. D. Lu ◽  
B. Variot

Radiation heat transfer at heat exchanger walls in fluidized beds has never been examined through a complete formulation of the problem. In this paper a wall-to-bed heat transfer model is proposed to account for particle convection, gas convection, and radiation exchange in a variable porosity medium. Momentum, energy, and intensity equations are solved in order to determine the velocity, temperature, radiative heat flux profiles and heat transfer coefficients. The discrete-ordinates method is used to compute the radiative intensity equation and the radiative flux divergence in the energy equation. Both the gray and the non-gray assumptions are considered, as well as dependent and independent scattering. The exact solution obtained is compared with several simplified approaches. Large differences are shown for small particles at high temperature but the simplified solutions are valid for large particle beds. The dependency of radiative contribution on controlling parameters is discussed.


Author(s):  
Songgeng Li ◽  
Weigang Lin ◽  
Jianzhong Yao

Experiments have been carried out in a gas-solids co-current down-flow circulating fluidized beds. The radial profiles of particle velocity and solid concentrations were measured by a fiber optical probe. Local solid flux was calculated based on the measured local particle velocity and solid concentration. The influence of gas velocity and solid recirculation rate on the radial flow structure has been examined. The experimental results show that the radial flow structure at high gas velocity has its own prominent characteristics in comparison with that at low gas velocity.


Sign in / Sign up

Export Citation Format

Share Document