WITHDRAWN: Nonylphenol degradation using immobilized carbon-doped TiO2 (Rutile/Anatase) under visible illumination: effect of operational parameters and degradation pathway

Author(s):  
Zahra Noorimotlagh ◽  
Iraj Kazeminezhad ◽  
Neemat Jaafarzadeh ◽  
Mehdi Ahmadi ◽  
Zahra Ramezani
2012 ◽  
Vol 100 (10) ◽  
pp. 102114 ◽  
Author(s):  
Jibao Lu ◽  
Ying Dai ◽  
Meng Guo ◽  
Lin Yu ◽  
Kangrong Lai ◽  
...  

2021 ◽  
pp. 112188
Author(s):  
Kavitha Pandi ◽  
Preeyanghaa Mani ◽  
Vinesh Vasudevan ◽  
Madhavan Jagannathan ◽  
Bernaurdshaw Neppolian

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1934 ◽  
Author(s):  
Jing Xu ◽  
Haiying Wang ◽  
Zhongpo Zhou ◽  
Zhaorui Zou

In this work, undoped, N-doped, WO3-loaded undoped, and WO3-loaded with N-doped TiO2 rutile single-crystal wafers were fabricated by direct current (DC) magnetron sputtering. N-doping into TiO2 and WO3 loading onto TiO2 surface were used to increase and decrease oxygen vacancies. Various measurements were conducted to analyze the structural and magnetic properties of the samples. X-ray diffraction results showed that the N-doping and WO3 loading did not change the phase of all samples. X-ray photoelectron spectroscopy results revealed that W element loaded onto rutile single-crystal wafers existed in the form of WO3. UV-Vis spectrometer results showed that the absorption edge of WO3-loaded undoped and WO3-loaded with N-doped TiO2 rutile single-crystal wafers had red shift, resulting in a slight decrease in the corresponding band gap. Photoluminescence spectra indicated that oxygen vacancies existed in all samples due to the postannealing atmosphere, and oxygen vacancies density increased with N-doping, while decreasing with WO3 loading onto TiO2 surface. The magnetic properties of the samples were investigated, and the saturation magnetization values were in the order N-doped > WO3-loaded with N-doped > undoped > WO3-loaded undoped rutile single-crystal wafers, which was the same order as the oxygen vacancy densities of these samples. N-doping improved the saturation magnetization values, while WO3-loaded decreased the saturation magnetization values. This paper reveals that the magnetic properties of WO3-loaded with N-doped rutile single-crystal wafers originate from oxygen vacancies.


Author(s):  
Srimala Sreekantan ◽  
Roshasnorlyza Hazan ◽  
Zainovia Lockman ◽  
Ishak Mat

The present study is directed to clarify the influence of carbon doping on the degradation of methyl orange. TiO2 nanotubes were prepared by anodizing titanium foils in a two electrode configuration bath with titanium foil as the anode and platinum as the counter electrode. The electrochemical bathconsists of 1 M Na2SO4 with 0.7 g ammonium fluoride, NH4F. The nanotubes obtained were further doped with carbon via in-situ and ex-situ method. Incorporation of carbon on TiO2 via in-situ method is accomplished during the anodization process by introducing oxalic acid into electrolyte while theex-situ doping involves carbon incorporation into pre-fabricated TiO2 nanotube via flame annealing using carbon blackN330. Characterization such as Scanning Electron Microscope (SEM), Energy Dispersive X-ray Analysis (EDX), and X-Ray Diffraction (XRD) are used to determine the surfacemorphology, composition of dopants, and phases exists. Well ordered nanotube with good adherence and smooth surface was obtained for both methods. When the oxide was annealed, X-ray diffraction analysis revealed the presence of anatase and rutile phase. The photocatalytic properties of thepure TiO2 and carbon doped TiO2 were tested for methyl orange degradation and the result indicated that the in-situ doped TiO2 has much better degradation than the ex-situ and pure TiO2. The percentage of methyl orange degradation for in-situ was 20% and 41% higher than ex-situ doped TiO2 and pure TiO2, respectively.


2018 ◽  
Vol 43 (9) ◽  
pp. 4335-4346 ◽  
Author(s):  
Yang Li ◽  
Liyuan Kuang ◽  
Dequan Xiao ◽  
Appala Raju Badireddy ◽  
Maocong Hu ◽  
...  

2020 ◽  
Vol 82 (9) ◽  
pp. 1961-1970
Author(s):  
Yu Gao ◽  
Shibo Cong ◽  
Yulun He ◽  
Donglei Zou ◽  
Yuzhi Liu ◽  
...  

Abstract Among the different antibiotics, tetracycline hydrochloride (TCH) is one of the most commonly used. In this study, the activated sodium persulfate (SPS) process induced by microwave (MW) energy was used to treat TCH. The effect of different operational parameters of MW/SPS-treated TCH, such as SPS concentration, TCH concentration, initial pH, and MW power, was investigated. The concentration changes of TCH were determined using a spectrophotometer. The results of radical scavenger experiments indicated that the sulfate radical () was stronger than the hydroxyl radical (·OH). On the basis of high performance liquid chromatography–mass spectrometry (HPLC–MS) analysis, a possible degradation pathway of TCH was proposed. This research indicates that the MW/SPS system is a promising prospect for the treatment of TCH.


2020 ◽  
Vol 8 (5) ◽  
pp. 104374
Author(s):  
Shimelis Kebede Kassahun ◽  
Zebene Kiflie ◽  
Hern Kim ◽  
Bekelcha Tesfaye Gadisa

Sign in / Sign up

Export Citation Format

Share Document