film fabrication
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 51)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Zhanfei Zhang ◽  
Jianli Wang ◽  
Lizhong Lang ◽  
Yan Dong ◽  
Jianghu Liang ◽  
...  

The two-step crystallization method for perovskite film fabrication has been recognized as an efficient process to obtain high-performance perovskite solar cells (PSCs). However, many issues related to the as-prepared lead...


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3206
Author(s):  
Yong Chan Choi ◽  
Kang-Won Jung

Ternary chalcohalides are promising lead-free photovoltaic materials with excellent optoelectronic properties. We propose a simple one-step solution-phase precursor-engineering method for antimony selenoiodide (SbSeI) film fabrication. SbSeI films were fabricated by spin-coating the precursor solution, and heating. Various precursor solutions were synthesized by adjusting the molar ratio of two solutions based on SbCl3-selenourea and SbI3. The results suggest that both the molar ratio and the heating temperature play key roles in film phase and morphology. Nanostructured SbSeI films with a high crystallinity were obtained at a molar ratio of 1:1.5 and a temperature of 150 °C. The proposed method could be also used to fabricate (Bi,Sb)SeI.


2021 ◽  
Author(s):  
Kuldeep Chand Verma ◽  
Manpreet Singh

In this chapter, we have report a list of synthesis methods (including both synthesis steps & heating conditions) used for thin film fabrication of perovskite ABO3 (BiFeO3, BaTiO3, PbTiO3 and CaTiO3) based multiferroics (in both single-phase and composite materials). The processing of high quality multiferroic thin film have some features like epitaxial strain, physical phenomenon at atomic-level, interfacial coupling parameters to enhance device performance. Since these multiferroic thin films have ME properties such as electrical (dielectric, magnetoelectric coefficient & MC) and magnetic (ferromagnetic, magnetic susceptibility etc.) are heat sensitive, i.e. ME response at low as well as higher temperature might to enhance the device performance respect with long range ordering. The magnetoelectric coupling between ferromagnetism and ferroelectricity in multiferroic becomes suitable in the application of spintronics, memory and logic devices, and microelectronic memory or piezoelectric devices. In comparison with bulk multiferroic, the fabrication of multiferroic thin film with different structural geometries on substrate has reducible clamping effect. A brief procedure for multiferroic thin film fabrication in terms of their thermal conditions (temperature for film processing and annealing for crystallization) are described. Each synthesis methods have its own characteristic phenomenon in terms of film thickness, defects formation, crack free film, density, chip size, easier steps and availability etc. been described. A brief study towards phase structure and ME coupling for each multiferroic system of BiFeO3, BaTiO3, PbTiO3 and CaTiO3 is shown.


Author(s):  
Qurat Ul Ain Bukhari ◽  
Filippo Silveri ◽  
Flavio Della Pelle ◽  
Annalisa Scroccarello ◽  
Daniele Zappi ◽  
...  

2021 ◽  
Vol 2 (03) ◽  
pp. 91-95
Author(s):  
Haveen Ahmed Mustafa Mustafa ◽  
Dler Adil Jameel

Spin coating is a technique employed for the deposition of uniform thin films of organic materials in the range of micrometer to nanometer on flat substrates. Typically, a small amount of coating material generally as a liquid is dropped over the substrate center, which is either static or spinning at low speed. The substrate is then rotated at the desired speed and the coating material has been spread by centrifugal force. A device that is used for spin coating is termed a spin coater or just a spinner. The substrate continued to spin and the fluid spins off the boundaries of the substrate until the film is reached the required thickness. The thickness and the characteristics of coated layer (film) are depending on the number of rotations per minute (rpm) and the time of rotation. Therefore, a mathematical model is obtained to clarify the prevalent method controlling thin film fabrication. Viscosity and the concentration of (solution) spin coating material are also affecting the thickness of the substrate. This article reviews spin coating techniques including stages in the coating process such as deposition, spin-up, stable fluid outflow (spin-off), and evaporation. Additionally, the main affecting factors on the film thickness in the coating process are reviewed.


2021 ◽  
Vol 201 ◽  
pp. 113914
Author(s):  
Alexandra L. Vyatskikh ◽  
Benjamin E. MacDonald ◽  
Alexander D. Dupuy ◽  
Enrique J. Lavernia ◽  
Julie M. Schoenung ◽  
...  

2021 ◽  
Author(s):  
María Romero-Angel ◽  
Javier Castells-Gil ◽  
Víctor Rubio-Giménez ◽  
Rob Ameloot ◽  
Sergio Tatay ◽  
...  

2021 ◽  
Vol 7 (23) ◽  
pp. eabe4206
Author(s):  
Yeseul Yun ◽  
Lutz Mühlenbein ◽  
David S. Knoche ◽  
Andriy Lotnyk ◽  
Akash Bhatnagar

Ever since the first observation of a photovoltaic effect in ferroelectric BaTiO3, studies have been devoted to analyze this effect, but only a few attempted to engineer an enhancement. In conjunction, the steep progress in thin-film fabrication has opened up a plethora of previously unexplored avenues to tune and enhance material properties via growth in the form of superlattices. In this work, we present a strategy wherein sandwiching a ferroelectric BaTiO3 in between paraelectric SrTiO3 and CaTiO3 in a superlattice form results in a strong and tunable enhancement in photocurrent. Comparison with BaTiO3 of similar thickness shows the photocurrent in the superlattice is 103 times higher, despite a nearly two-thirds reduction in the volume of BaTiO3. The enhancement can be tuned by the periodicity of the superlattice, and persists under 1.5 AM irradiation. Systematic investigations highlight the critical role of large dielectric permittivity and lowered bandgap.


Sign in / Sign up

Export Citation Format

Share Document