Flow hydrodynamics of immiscible liquids with low viscosity ratio in a rectangular microchannel with T-junction

2018 ◽  
Vol 352 ◽  
pp. 120-132 ◽  
Author(s):  
Alexander V. Kovalev ◽  
Anna A. Yagodnitsyna ◽  
Artur V. Bilsky
2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Saurabh Bhardwaj ◽  
Amaresh Dalal

In the present study, the interfacial dynamics of displacement of three-dimensional spherical droplet on a rectangular microchannel wall considering wetting effects are studied. The two-phase lattice Boltzmann Shan−Chen model is used to explore the physics. The main focus of this study is to analyze the effect of wettability, low viscosity ratio, and capillary number on the displacement of spherical droplet subjected to gravitational force on flat as well as grooved surface of the channel wall. The hydrophobic and hydrophilic natures of wettabilities on wall surface are considered to study for viscosity ratio, M≤1. The results are presented in the form of temporal evolution of wetted length and wetted area for combined viscosity ratios and wettability scenario. In the present study, it is observed that in dynamic droplet displacement, the viscosity ratio and the capillary number play a significant role. It is found that as the viscosity ratio increases, both the wetted area and the wetted length increase and decrease in the case of hydrophilic and hydrophobic wettable walls, respectively. The groove area on the vertical wall tries to entrap fraction of droplet fluid in case of hydrophilic surface of the vertical wall, whereas in hydrophobic case, droplet moves past the groove without entrapment.


Author(s):  
Saurabh Bhardwaj ◽  
Amaresh Dalal

In the present study, the interfacial dynamics of displacement of three dimensional spherical droplet on a rectangular microchannel wall considering wetting effects are studied. The two-phase lattice Boltzmann Shan-Chen model is used to explore the physics. The main focus of this study is to analyse the effect of wettability, low viscosity ratio and capillary number on the displacement of spherical droplet subjected to gravitational force. The hydrophobic and hydrophilic nature of wettabilities on wall surface are considered to study with capillary number, Ca=0.1, 0.35 and 0.66 and viscosity ratio, M ≤ 1. The results are presented in the form of temporal evolution of wetted length and wetted area for combined viscosity ratios and wettability scenario. In the present study, it is observed that in dynamic droplet displacement, the viscosity ratio and capillary number play a significant role. It is found that as viscosity ratio increases, both the wetted area and the wetted length increase and decrease in the case of hydrophilic and hydrophobic wettable wall respectively.


Soft Matter ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. 2854-2863 ◽  
Author(s):  
Francesco De Vita ◽  
Marco Edoardo Rosti ◽  
Sergio Caserta ◽  
Luca Brandt

Emulsion under shear flow can exhibit banded structures at low viscosity ratio. When coalescence is favoured, it can stabilize bands generated by migration of droplets. The reduction of the total surface results in a lower effective viscosity state.


2017 ◽  
Vol 826 ◽  
pp. 128-157 ◽  
Author(s):  
Alireza Mohammadi ◽  
Alexander J. Smits

The stability of two-layer Couette flow is investigated under variations in viscosity ratio, thickness ratio, interfacial tension and density ratio. The effects of the base flow on eigenvalue spectra are explained. A new type of interfacial mode is discovered at low viscosity ratio with properties that are different from Yih’s original interfacial mode (Yih, J. Fluid Mech., vol. 27, 1967, pp. 337–352). No unstable Tollmien–Schlichting waves were found over the range of parameters considered in this work. The results for thin films with different thicknesses can be collapsed onto a single curve if the Reynolds number and wavenumber are suitably defined based on the parameters of the thin layer. Interfacial tension always has a stabilizing effect, but the effects of density ratio cannot be so easily generalized. Neutral stability curves for water–alkane and water–air systems are presented as an initial step towards better understanding the effects of flow stability on the longevity and performance of liquid-infused surfaces and superhydrophobic surfaces.


2014 ◽  
Vol 744 ◽  
Author(s):  
E. Q. Li ◽  
S. A. Al-Otaibi ◽  
I. U. Vakarelski ◽  
S. T. Thoroddsen

AbstractWhen a bubble rises to an interface between two immiscible liquids, it can pass through the interface, if this is energetically favourable, i.e. the bubble preferring the side of the interface with the lower air–liquid surface tension. Once the intermediate film between the bubble and the interface has drained sufficiently, the bubble makes contact with the interface, forming a triple-line and producing strong capillary waves which travel around the bubble and can pinch off a satellite on the opposite side, akin to the dynamics in the coalescence cascade. We identify the critical Ohnesorge numbers where such satellites are produced and characterize their sizes. The total transition time scales with the bubble size and differential surface tension, while the satellite pinch-off time scales with the capillary-inertial time of the pool liquid, which originally surrounds the bubble. We also use high-speed video imaging to study the motion of the neck of the contact. For low viscosity we show that it grows in time with a power-law exponent between 0.44 and 0.50, with a prefactor modified by the net sum of the three interfacial tensions. Increasing the viscosity of the receiving liquid drop drastically slows down the motion of the triple-line, when the Ohnesorge number exceeds ${\sim }$0.08. This differs qualitatively from the coalescence of two miscible drops of different viscosities, where the lower viscosity sets the coalescence speed. We thereby propose a strong resistance from the triple-line.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
C. Y. Wang

The starting flow due to a sudden pressure gradient in a channel containing two layers of different fluids is studied for the first time. The necessary eigenvalues and eigenfunctions, including orthogonality, for the composite regions are developed. Infinite series analytic solution is obtained for the starting transient. The properties of the instantaneous velocity profiles depend on the thickness ratio of the layers, the viscosity ratio, and the density ratio. Starting times are determined for the important cases of air over water and oil over water. The bulk flow is greatly increased when there exists a low-viscosity layer buffeting the channel wall. An important conclusion is that, in general, Navier's partial slip condition cannot be applied to unsteady starting flows.


2016 ◽  
Vol 60 (6) ◽  
pp. 1121-1135
Author(s):  
Kevin Verilhac ◽  
Melinda Desse ◽  
Christian Carrot ◽  
Françoise Fenouillot

Sign in / Sign up

Export Citation Format

Share Document