scholarly journals Design of 3D-printed structures for improved mass transfer and pressure drop in packed-bed reactors

2021 ◽  
pp. 129762
Author(s):  
Lucas Chatre ◽  
Joseph Socci ◽  
Samuel J. Adams ◽  
Petr Denissenko ◽  
Nikolay Cherkasov
2017 ◽  
Vol 2 (2) ◽  
pp. 137-148 ◽  
Author(s):  
Aditi Potdar ◽  
Lidia N. Protasova ◽  
Leen Thomassen ◽  
Simon Kuhn

Designed porous milli-scale reactors with enhanced mass transfer performance and reduced pressure drop compared to conventional packed bed reactors.


1998 ◽  
Vol 37 (3) ◽  
pp. 815-824 ◽  
Author(s):  
Bruce G. Anderson ◽  
Frank J. M. M. de Gauw ◽  
Niels J. Noordhoek ◽  
Leo J. van IJzendoorn ◽  
Rutger A. van Santen ◽  
...  

2019 ◽  
Author(s):  
Nasser Vahedi ◽  
Alparslan Oztekin

Abstract The new generation of Concentrated Solar Power (CSP) plants requires high temperature and high energy density storage system with good cyclic stability. The potential solution satisfying such requirements is the thermochemical energy storage (TCES) using gas-solid redox reaction. Design of efficient storage reactor is very critical for applications of such storage systems. Packed bed reactors have a simpler design with no moving components and are more cost-effective compared to other available moving bed design configurations while having high-pressure drop is their main drawback. Any improvement in the pressure drop makes the design more suitable for commercial applications, especially at high temperature operating conditions. Cobalt oxide redox reaction has been considered for this study because of its unique features, especially high enthalpy of reaction (energy density) and high reaction temperature. A rectangular cross-section packed bed reactor with a large aspect ratio is selected as a reference conventional packed bed reactor. The novel split-flow packed bed reactor design configuration is proposed in which a portion of heat transfer fluid is passed through adjacent side channels. The split flow ratio of 1/3 has been considered for the case study. The transient two-dimensional numerical model is developed for solving mass, momentum, and energy equations for both gas and solid phases using suitable reaction kinetics for the reversible reduction and re-oxidation process. Complete storage cycle, including both the charging and discharging mode, has been simulated using finite element method. The split flow design performance is compared with the reference case considering the same size of the reaction bed. It is shown that the conversion time is increased while the pressure drop reduced below half of the pressure loss of the conventional design. Reduced mass flow rate passing through the bed results in considerable improvement in required pressure work with a penalty of storage performance. Further study is needed to optimize the split flow ratio and the surface heat transfer characteristics of the bed. The proposed design configuration could be a breakthrough in packed bed reactors, especially for high-temperature storage applications.


2020 ◽  
Vol 20 (06) ◽  
pp. 2050033
Author(s):  
YAO CHEN ◽  
XUEYE CHEN

In this paper, the monophasic catalytic reaction in the microreactor is studied. Several factors that may affect the catalytic reaction are discussed, including the pressure drop, the size of catalyst particles, and the channel structure. Finally, some important conclusions can be reached. The change of pressure drop has an effect on the reaction. For example, the C3H6 conversion rate is 62.88% when the pressure drop is 8[Formula: see text]atm, and the C3H6 conversion rate is 61.78% when the pressure drop is 11[Formula: see text]atm. The effect of the change particle radius is not obvious on the reaction. Enhancing the mixing of substances before entering the reaction domain is helpful to the catalytic reaction. There are different substances concentration in catalyst particles at different positions in microreactors. But from the surface to the inside of catalyst particles, the substances concentration has a clear change rule.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 46
Author(s):  
Pao Chi Chen ◽  
Ming-Wei Yang ◽  
Yan-Lin Lai

A lab-scale packed-bed stripper containing Dixon rings was used to explore the effects of the process variables on the hydrodynamics and mass-transfer in a stripper using a mixed solvent loaded CO2. The variables are the liquid flow rate, reboiler temperature, and amine concentration, and the hydrodynamic and mass-transfer data can be determined using different models. In the case of hydrodynamics, the dimensionless pressure drop at the flooding point and the total pressure drop were explored first. In the case of mass-transfer, the correlation of the mass-transfer coefficient and the parameter importance were also observed. In addition, the number of plates per meter can be compared with the Dixon rings manufacturer. Finally, the performances of a mixed solvent and monoethanolamine (MEA) solvent were also discussed.


Sign in / Sign up

Export Citation Format

Share Document