Dynamic Model and Performance of an Integrated Sorption-enhanced Steam Methane Reforming Process with Separators for the Simultaneous Blue H2 Production and CO2 Capture

2021 ◽  
pp. 130044
Author(s):  
Nguyen Dat Vo ◽  
Jun-Ho Kang ◽  
Min Oh ◽  
Chang-Ha Lee
Author(s):  
Angineh Zohrabian ◽  
Mohammad Mansouri Majoumerd ◽  
Mohammad Soltanieh ◽  
Øystein Arild

In order to achieve the international climate goals and to keep the global temperature increase below 2 °C, carbon capture and storage in large point sources of CO2 emissions has received considerable attention. In recent years, mitigation of CO2 emissions from the power sector has been studied extensively whereas other industrial point source emitters such as hydrogen industry have also great potential for CO2 abatement. This study aims to draw an updated comparison between different hydrogen and power cogeneration systems using natural gas and coal as feedstock. The goal is to show the relative advantage of cogeneration systems with respect to CO2 emission reduction costs. Accordingly, the Reference Case is selected as a large-scale H2 production system with CO2 venting using natural gas based on steam methane reforming. In this work, H2 and electricity cogeneration with CO2 capture based on auto-thermal reforming of natural gas has been simulated using ASPEN Plus™, while the cost and performance indicators for the plant based on steam methane reforming of natural gas and the coal-based plants have been adopted from the literature. Using a consistent approach, different plants are compared techno-economically. A sensitivity analysis has also been performed with variation in the most important input parameters including natural gas price (2–8 $/GJ), coal price (1–4 $/GJ), electricity price (30–90 $/MWh) and capacity factors (85–50%) and the results are presented here. The results demonstrate that the total efficiency of the system is slightly higher in natural gas-based systems than in coal-based systems. The results also indicate that although H2 production cost increases with power cogeneration and CO2 capture, cogeneration is a promising and attractive alternative for clean power generation. The highest sensitivity of the results has been observed for the fuel price.


2021 ◽  
Vol 11 (13) ◽  
pp. 6021
Author(s):  
Shinje Lee ◽  
Hyun Seung Kim ◽  
Junhyung Park ◽  
Boo Min Kang ◽  
Churl-Hee Cho ◽  
...  

Steam methane reforming (SMR) process is regarded as a viable option to satisfy the growing demand for hydrogen, mainly because of its capability for the mass production of hydrogen and the maturity of the technology. In this study, an economically optimal process configuration of SMR is proposed by investigating six scenarios with different design and operating conditions, including CO2 emission permits and CO2 capture and sale. Of the six scenarios, the process configuration involving CO2 capture and sale is the most economical, with an H2 production cost of $1.80/kg-H2. A wide range of economic analyses is performed to identify the tradeoffs and cost drivers of the SMR process in the economically optimal scenario. Depending on the CO2 selling price and the CO2 capture cost, the economic feasibility of the SMR-based H2 production process can be further improved.


2012 ◽  
Vol 37 (21) ◽  
pp. 16346-16358 ◽  
Author(s):  
Grigorios Pantoleontos ◽  
Eustathios S. Kikkinides ◽  
Michael C. Georgiadis

Author(s):  
M. Gambini ◽  
M. Vellini

In this paper two options for H2 production by means of fossil fuels are presented, evaluating their performance when integrated with advanced H2/air cycles. The investigation has been developed with reference to two different schemes, representative both of consolidated technology (combined cycle power plants) and of innovative technology (a new advance mixed cycle, named AMC). The two methods, here considered, to produce H2 are: • coal gasification: it permits transformation of a solid fuel into a gaseous one, by means of partial combustion reactions; • steam-methane reforming: it is the simplest and potentially the most economic method for producing hydrogen in the foreseeable future. These hydrogen production plants require material and energy integrations with the power section, and the best connections must be investigated in order to obtain good overall performance. The main results of the performed investigation are quite variable among the different H2 production options here considered: for example the efficiency value is over 34% for power plants coupled with coal decarbonization system, while it is in a range of 45–48% for power plants coupled with natural gas decarbonization. These differences are similar to those attainable by advanced combined cycle power plants fuelled by natural gas (traditional CC) and coal (IGCC). In other words, the decarbonization of different fossil fuels involves the same efficiency penalty related to the use of different fossil fuel in advanced cycle power plants (from CC to IGCC for example). The CO2 specific emissions depend on the fossil fuel type and the overall efficiency: adopting a removal efficiency of 90% in the CO2 absorption systems, the CO2 emission reduction is 87% and 82% in the coal gasification and in the steam-methane reforming respectively.


Author(s):  
Marco Gambini ◽  
Michela Vellini

In this paper two options for H2 production, by means of natural gas, are presented and their performances are evaluated when they are integrated with advanced H2/air cycles. In this investigation two different schemes have been analysed: an advanced combined cycle power plant (CC) and a new advanced mixed cycle power plant (AMC). The two methods for producing H2 are as follows: • steam methane reforming: it is the simplest and potentially the most economic method for producing hydrogen in the foreseeable future; • partial oxidation of methane: it could offer an energy advantage because this method reduces energy requirement of the reforming process. These hydrogen production plants require material and energetic integrations with power section and the best interconnections must be investigated in order to obtain good overall performance. With reference to thermodynamic and economic performance, significant comparisons have been made between the above introduced reference plants. An efficiency decrease and an increase in the cost of electricity has been obtained when power plants are equipped with a natural gas decarbonisation section. The main results of the performed investigation are quite variable among the different H2 production technologies here considered: the efficiency decreases in a range of 5.5 percentage points to nearly 10 for the partial oxidation of the natural gas and in a range of 8.8 percentage points to over 12 for the steam methane reforming. The electricity production cost increases in a range of about 41–42% for the first option and in a range of about 34–38% for the second one. The AMC, coupled with partial oxidation, stands out among the other power plant solutions here analysed because it exhibits the highest net efficiency and the lowest final specific CO2 emission. In addition to this, economic impact is favourable when AMC is equipped with systems for H2 production based on partial oxidation of natural gas.


Sign in / Sign up

Export Citation Format

Share Document