Carbon Dioxide Solid-Phase Embedding Reaction of Silicon-Carbon Nanoporous Composites for Lithium-Ion Batteries

2021 ◽  
pp. 130127
Author(s):  
Zhiwei Yang ◽  
Lang Qiu ◽  
Mengke Zhang ◽  
Yanjun Zhong ◽  
Benhe Zhong ◽  
...  
2015 ◽  
Vol 30 (4) ◽  
pp. 351 ◽  
Author(s):  
HUANG Yan-Hua ◽  
HAN Xiang ◽  
CHEN Hui-Xin ◽  
CHEN Song-Yan ◽  
YANG Yong

2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


2009 ◽  
Vol 189 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Zhaojun Luo ◽  
Dongdong Fan ◽  
Xianlong Liu ◽  
Huanyu Mao ◽  
Caifang Yao ◽  
...  

2013 ◽  
Vol 779-780 ◽  
pp. 52-55
Author(s):  
Guang Jin Zhao ◽  
Wen Long Wu ◽  
Yang Guo

Following during development of electric vehicles and other modern-life appliances, numerous lithium-ion batteries are fabricated and used every year, and their consumption is constantly expanding. However, the battery life of the lithium-ion batteries is about 3 to 5 years, and there are some hazardous and noxious substances in spent lithium-ion batteries. Therefore, it is necessary to recycling these spent batteries with some resourceful and environment friendly technology. In this work, we propose a novel technology of resourceful disposing and utilizing oxide cathode materials from spent power lithium-ion batteries, which is using the recovered compounds from spent lithium-ion batteries to capture carbon dioxide from fossil fuel plant. The detailed technical routes of laboratory scale test and bench scale test are also given in the work.


2016 ◽  
Vol 168 ◽  
pp. 138-142 ◽  
Author(s):  
Yu Zhou ◽  
Huajun Guo ◽  
Yong Yang ◽  
Zhixing Wang ◽  
Xinhai Li ◽  
...  

2016 ◽  
Vol 328 ◽  
pp. 527-535 ◽  
Author(s):  
Julien Sourice ◽  
Arnaud Bordes ◽  
Adrien Boulineau ◽  
John P. Alper ◽  
Sylvain Franger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document