Cyclosporin A does not protect the disruption of the inner mitochondrial membrane potential induced by potassium ionophores in intact K562 cells

2006 ◽  
Vol 30 (3) ◽  
pp. 197-204 ◽  
Author(s):  
Luis F. Marques-Santos ◽  
Vivian M. Coqueiro ◽  
Vivian M. Rumjanek
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4097-4097
Author(s):  
Gregory A. Denomme ◽  
Jonathan Micieli ◽  
Jenny Shu ◽  
Dan Wang ◽  
Bernard J. Fernandes

Abstract The human erythrocyte transmembrane sialoglycoprotein, glycophorin C (GYPC), plays a functional role in regulating red cell shape and mechanical stability. Antibodies to GYPC cause hemolytic disease of the fetus and newborn (HDFN) that is associated with classical Fcγ receptor-mediated phagocytosis. However, in vitro clonogenic studies with cord blood progenitor cells suggest that anti-GYPC also suppresses erythropoiesis, which is consistent with the observations of severe and early fetal anemia and late onset neonatal anemia [Transfus Med2005;15:125–32]. The mechanism of the suppressive effect on erythropoiesis is unknown. The K562 erythroleukemic cell line treated with anti-GYPC is a potential model system to study the suppressive effect of anti-GYPC. The present in vitro studies were designed to confirm the effect of anti-GYPC on K562 cell growth and viability, and to evaluate changes in mitochondrial membrane potential, phosphatidylserine (PS) expression, propidium iodide (PI) binding, and caspase activation. K562 cells fail to grow in the presence of anti-GYPC confirming earlier CFU-E/BFU-E studies [Brit J Haematol2006;133:443–4], and increased the exofacial expression of PS/PI over time. This process was caspase-independent as demonstrated by the failure of Z-VAD, a caspase inhibitor, to reverse growth inhibition and PS/PI expression. A loss of mitochondrial membrane potential was demonstrated using JC-1, a cationic dye that is sensitive to potential-dependent accumulation or loss in mitochondria. There was a 50% increase in K562 cell mitochondrial membrane potential disruption after 2 days of culture with anti-GYPC (see figure). Morphological examination of May Grunwalde Giemsa-stained K562 cells treated with anti-GYPC for 2 days showed a decrease in mitotic activity compared to isotype treated cells. By day 4, the anti-GYPC treated cells were showing evidence of plasma membrane damage and cell death resulting from fragmentation and dissolution of the cytoplasm. The addition of hemin, an oxidative form of iron protoporphyrin IX known to induce erythroid differentiation of K562 cells, to anti-GYPC treated cells reversed growth inhibition by 45% but did not prevent the loss of mitochondrial membrane potential. Overall, although caspases appear to be unimportant in anti-GYPC induced cell death, the mitchondria play an important role as the early events leading to antibody-mediated suppression of erythropoiesis. Mitochondrial Membrane Potential Disruption by Anti-GYPC Mitochondrial Membrane Potential Disruption by Anti-GYPC


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 163-163
Author(s):  
Dhvanit I Shah ◽  
Naoko Takahasi-Makise ◽  
Iman Schultz ◽  
Eric L Pierce ◽  
Liangtao Li ◽  
...  

Abstract Abstract 163 Iron plays a key role as a cofactor in many fundamental metabolic processes, which require heme synthesis and Fe/S cluster assembly in the mitochondria. Defects in the transport of iron into the mitochondria would lead to anemias due to a deficiency in heme and hemoglobin synthesis. Here we describe a zebrafish genetic mutant, pinotage (pnttq209), which exhibits a profound hypochromic, microcytic anemia. Erythrocytes from pnt mutants have a defect in hemoglobinization and decreased red cell indices (mean corpuscular volume and hemoglobin content, hematocrit, hemoglobin concentration). Through positional cloning, we showed that the mitochondrial ATPase Inhibitory Factor 1 (atpif1), which regulates the inner mitochondrial membrane potential, is the gene disrupted in pnt. The identity of the pnt gene was verified by: (a) decreased atpif1 steady-state mRNA in pnt mutants, (b) phenocopying the anemia with anti-sense atpif1 morpholinos, (c) functional complementation of the anemia with atpif1 cRNA, and (d) a genetic polymorphism in the 3'UTR co-segregating with the mutant phenotype that destabilizes the atpif1 mRNA. Consistent with the conserved function of atpif1 in higher vertebrates, the silencing of the murine ortholog of atpif1 in Friend mouse erythroleukemia (MEL) cells showed a defect in hemoglobinization by o-dianisidine staining and reduction of 59Fe incorporation into heme in 59Fe-metabolically labeled cells. Moreover, Atpif1 knockdown destabilizes their mitochondrial membrane potential and volume. Therefore, the identification of atpif1 in pnt functionally demonstrates the role of atpif1 in regulating the proton motive gradient across the inner mitochondrial membrane for mitochondrial iron incorporation in heme biosynthesis. These results uncover a novel hematopoiesis-related function of atpif1, which will directly contribute to our understanding and potential treatment of human congenital and acquired anemias. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
ChaoYong Liu ◽  
YanMin Ma ◽  
XiaoQin Zhang ◽  
Yang Liu ◽  
XiaoCheng Yin

Abstract Objective: To explore whether UVRAG regulates mitochondrial autophagy via BNIP3L in K562 cellsMaterial and methods: We designed various assays to verify the relation between UVRAG and BNIP3L, we estabilished a mitochondrial autophagy model of K562 cells by CCCP, a mitochondrial autophagy inducer, and regulated the expression of UVRAG by cells transfection. Then we detected the expression of the BINP3L and autophagy-related proteins LC3-II/LC3-Ⅰ and P62 by Western blot. The changes of ROS, mitochondrial mass, and mitochondrial membrane potential (MMP) were detected by flow cytometry technology.Results: We found that CCCP could induce K562 cells mitochondrial autophagy, along with the change of MMP, mitochondrial mass and accumulation of ROS, also our experiment proved that UVRAG-Knockdown could reverse this phenomenon. Investigating the pathway of mitochondrial autophagy revealed UVRAG knockdown was accompanied by a decrease in BNIP3L and LC3 expression, a increase in P62 during mitochondrial autophagy. Conclusion: In our study, the results suggested that UVRAG may regulate mitochondrial autophagy of K562 cells via targeting BINP3L, which may be a potential target for the treatment of CML.


2008 ◽  
Vol 30 (5) ◽  
pp. 435-450
Author(s):  
Wilfried Kugler ◽  
Leo Veenman ◽  
Yulia Shandalov ◽  
Svetlana Leschiner ◽  
Ilana Spanier ◽  
...  

Background: We have previously shown that the anti-neoplastic agent erucylphosphohomocholine (ErPC3) requires the mitochondrial 18 kDa Translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor (PBR), to induce cell death via the mitochondrial apoptosis pathway.Methods: With the aid of the dye JC-1 and cyclosporin A, applied to glioblastoma cells, we now investigated the significance of opening of the mitochondrial permeability transition pore (MPTP) for ErPC3-induced apoptosis in interaction with the TSPO ligands, PK 11195 and Ro5 4864. Furthermore, we measured cytochrome c release, and caspase-9 and -3 activation in this paradigm.Results: The human glioblastoma cell lines, U87MG, A172 and U118MG express the MPTP-associated TSPO, voltage-dependent anion channel and adenine nucleotide transporter. Indeed, ErPC3-induced apoptosis was inhibited by the MPTP blocker cyclosporin A and by PK 11195 and Ro5 4864 in a concentration-dependent manner. Furthermore, PK 11195 and Ro5 4864 inhibited collapse of the mitochondrial membrane potential, cytochrome c release, and caspase-9 and -3 activation caused by ErPC3 treatment.Conclusions: This study shows that PK 11195 and Ro5 4864 inhibit the pro-apoptotic function of ErPC3 by blocking its capacity to cause a collapse of the mitochondrial membrane potential. Thus, the TSPO may serve to open the MPTP in response to anti-cancer drugs such as ErPC3.


2011 ◽  
Vol 23 (1) ◽  
pp. 159
Author(s):  
M. Romek ◽  
B. Gajda ◽  
M. Rolka ◽  
Z. Smorag

In comparison to in vivo derived pig embryos, in vitro culture conditions produce embryos with altered metabolic rates of carbohydrates and fatty acids (Romek M et al. 2010 Theriogenology 74, 265–276), which may compromise embryo viability. Because various energy substrates are metabolized via several aerobic pathways leading to generation of the inner mitochondrial membrane potential (ΔΨm), value of ΔΨm is a key indicator of embryo metabolic activity, closely related to oxygen consumption and cellular energy needs. Therefore, the aim of this study was to compare ΔΨm between non-cultured and cultured pig embryos during early development. The non-cultured embryos were obtained from 6-month-old gilts, whereas those derived in vitro were cultured from zygotes to the appropriate stage in North Carolina State University 23 (NCSU-23) medium supplemented with 4 mg mL–1 of bovine serum albumin. The ΔΨm measurements were carried out on both non-cultured and cultured 4 to 8 cell embryos, morulae, blastocysts and late blastocysts. For this, embryos were labelled with 0.5 μM Mito Tracker Orange CMTMRos (MtOR) for 30 min at 39°C and then with 0.5 μM Mito Tracker Deep Red (MtDR) for 30 min at 10°C. Using a LSM 510 Meta Zeiss confocal microscope, we measured the amounts of fluorescence (IMtOR and IMtDR) emitted from embryos and values of ΔΨm were estimated as the IMtOR/IMtDR ratios. The results were analysed by ANOVA and Tukey's test. From the zygote to morula stages, ΔΨm remained unchanged and did not differ between developmentally matched non-cultured and cultured embryos (P < 0.001). The value of ΔΨm increased significantly (P < 0.05) from 0.90 ± 0.26 arbitrary units (a.u.) for morulae to 3.92 ± 0.63 and 2.06 ± 0.38 a.u. for non-cultured and cultured early blastocysts, respectively. Whereas the mean value of ΔΨm was almost 2 times higher in non-cultured than in cultured early blastocysts, the mitochondrial membrane potential was statistically similar (P < 0.05) in the in vivo derived (2.10 ± 0.37 a.u.) compared to cultured (1.87 ± 0.30 a.u.) blastocysts. The lower ΔΨm in cultured early blastocysts may be explained by several-fold higher glucose concentration in NCSU-23 medium than in the oviductal fluid. It was reported that high levels of glucose decreases the Krebs cycle metabolism of pyruvate, glutamine, and glucose, and reduces oxidation rates of fatty acids in cultured pig embryos in comparison with in vivo counterparts. Hence, this impaired metabolism reflected by decreased ΔΨm may be responsible for insufficient energy production and reduced developmental competence of cultured early blastocysts. Therefore, because embryo-cavitation is a critical event in pig development, further effort should be focused on proper blastocyst culture. Research was partially supported by Grant NR 12 0036 06 from NCBiR, Poland.


Sign in / Sign up

Export Citation Format

Share Document