Inhibitory effects of adrenomedullin on the expression of vascular cell adhesion molecule-1 in myocardial ischemia-reperfusion injury

2008 ◽  
Vol 32 (3) ◽  
pp. S12-S12
Author(s):  
Yu Ting Bai ◽  
Qing Min ◽  
Wen Liang Zha ◽  
Jing Zhi Wan ◽  
Hui Gao
2020 ◽  
Vol 19 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Zhanling Liao ◽  
Xiaoli Cheng ◽  
Chunyan Xiang ◽  
Feng Liu

Purpose: To explore the effect of miR-138 on regulating intercellular cell adhesion molecule 1 (ICAM-1) expression in endothelial cells to alleviate cardiac ischemia/reperfusion (I/R) injury and its related mechanisms. Methods: The left anterior descending artery of the heart was occluded for 30 min and then perfused for 2 h to induce a rat model of cardiac I/R injury. H9C2 cells were cultured in an anoxic medium without serum to establish the model of hypoxia/reoxygenation (H/R). Triphenyl tetrazolium chloride (TTC) staining was applied to measure myocardial infarction sizes in rat hearts. The mRNA expression levels of miR-138 and ICAM-1 were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Dual luciferase reporter assay was used to identify the target of miR-138. The agomiR-138 and miR-138 mimics were transfected into H9C2 cells; exogenous ICAM-1 was also administered, and ROS accumulation, cell viability, and apoptosis were measured. Furthermore, the underlying mechanism was investigated. Results: MiR-138 was downregulated both in vitro and in vivo. AgomiR-138 reduced myocardial infarction area, decreased ROS production and suppressed cell apoptosis in a rat model of cardiac I/R injury. On the other hand, miR-138 mimics increased cell viability, enhanced ROS production and induced cell apoptosis in H/R-induced H9C2 cells. Further analysis verified ICAM-1 as a target of miR- 138. Besides, exogenous ICAM-1 inhibited the protective effect of miR-138 on H/R-induced apoptosis in vitro. Conclusion: MiR-138 may protect against injury of myocardial I/R by targeting ICAM-1. The results also provide insight into miR-138/ICAM-1 axis as new therapeutic targets for myocardial I/R injury. Keywords: Intercellular cell adhesion molecule 1, MicroRNA-138, Myocardial/ischemia reperfusion injury, Reactive oxygen species


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1025
Author(s):  
Sara Pastorino ◽  
Sara Baldassari ◽  
Giorgia Ailuno ◽  
Guendalina Zuccari ◽  
Giuliana Drava ◽  
...  

Atherosclerosis is a chronic progressive disease involving inflammatory events, such as the overexpression of adhesion molecules including the endothelial Vascular Cell Adhesion Molecule-1 (VCAM-1). VCAM-1 is rapidly overexpressed in the first stages of atherosclerosis, thus representing a promising target for early atheroma detection. Two novel Positron Emission Tomography (PET) radiopharmaceuticals (MacroP and NAMP), based on the VCAM-1-binding peptide having sequence VHPKQHRGGSKGC, were synthesized and characterized. MacroP is derived from the direct conjugation of a DOTA derivative with the peptide, while NAMP is a biotin derivative conceived to be employed in a three-step pretargeting system, involving the use of a double-chelating derivative of DOTA. The identity of the newly synthesized radiopharmaceuticals was confirmed by mass spectrometry and, after radiolabeling with 68Ga, both showed high radiochemical purity; in vitro tests on human umbilical vein endothelial cells evidenced their VCAM-1 binding ability, with higher radioactive uptake in the case of NAMP. Moreover, NAMP might also be employed in a theranostic approach in association with functionalized biotinylated nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document