scholarly journals MiR-138 ameliorates myocardial ischemia/reperfusion injury by targeting intercellular cell adhesion molecule 1

2020 ◽  
Vol 19 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Zhanling Liao ◽  
Xiaoli Cheng ◽  
Chunyan Xiang ◽  
Feng Liu

Purpose: To explore the effect of miR-138 on regulating intercellular cell adhesion molecule 1 (ICAM-1) expression in endothelial cells to alleviate cardiac ischemia/reperfusion (I/R) injury and its related mechanisms. Methods: The left anterior descending artery of the heart was occluded for 30 min and then perfused for 2 h to induce a rat model of cardiac I/R injury. H9C2 cells were cultured in an anoxic medium without serum to establish the model of hypoxia/reoxygenation (H/R). Triphenyl tetrazolium chloride (TTC) staining was applied to measure myocardial infarction sizes in rat hearts. The mRNA expression levels of miR-138 and ICAM-1 were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Dual luciferase reporter assay was used to identify the target of miR-138. The agomiR-138 and miR-138 mimics were transfected into H9C2 cells; exogenous ICAM-1 was also administered, and ROS accumulation, cell viability, and apoptosis were measured. Furthermore, the underlying mechanism was investigated. Results: MiR-138 was downregulated both in vitro and in vivo. AgomiR-138 reduced myocardial infarction area, decreased ROS production and suppressed cell apoptosis in a rat model of cardiac I/R injury. On the other hand, miR-138 mimics increased cell viability, enhanced ROS production and induced cell apoptosis in H/R-induced H9C2 cells. Further analysis verified ICAM-1 as a target of miR- 138. Besides, exogenous ICAM-1 inhibited the protective effect of miR-138 on H/R-induced apoptosis in vitro. Conclusion: MiR-138 may protect against injury of myocardial I/R by targeting ICAM-1. The results also provide insight into miR-138/ICAM-1 axis as new therapeutic targets for myocardial I/R injury. Keywords: Intercellular cell adhesion molecule 1, MicroRNA-138, Myocardial/ischemia reperfusion injury, Reactive oxygen species

2021 ◽  
Vol 18 (4) ◽  
pp. 979-991
Author(s):  
Dan Liu ◽  
Qiang Li ◽  
Hailin Ding ◽  
Guangfeng Zhao ◽  
Zhiyin Wang ◽  
...  

AbstractImmune activation at the maternal-fetal interface is a main pathogenic factor of preeclampsia (PE). Neutrophils (PMNs) are activated in PE patients, but the mechanism and consequences of PMN activation need to be further explored. Here, we demonstrated that interleukin-32 (IL-32) expression was significantly upregulated in syncytiotrophoblasts (STBs) and that IL-32β was the major isoform with increased expression in the placenta of severe PE (sPE) patients. Furthermore, the level of IL-32 expression in the placenta was correlated with its level in the serum of sPE patients, indicating that IL-32 in the serum is derived mainly from the placenta. Then, in vitro experiments showed that IL-32β could highly activate PMNs and that these IL-32β-activated PMNs were better able to adhere to endothelial cells (HUVECs) and enhance the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) in HUVECs, which could be reversed by preincubation with the NADPH oxidase inhibitor VAS 2870. In addition, we showed that IL-32β mainly activated PMNs by binding to proteinase 3. Finally, IL-32β administration induced a PE-like phenotype in a pregnant mouse model. This study provides evidence of the involvement of IL-32β in the pathogenesis of PE.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Kun Liu ◽  
Fei Wang ◽  
Shuo Wang ◽  
Wei-Nan Li ◽  
Qing Ye

The aim of this study was to investigate the cardioprotective effect of mangiferin (MAF) in vitro and in vivo. Oxidative stress and inflammatory injury were detected in coronary artery ligation in rats and also in hypoxia-reoxygenation- (H/R-) induced H9c2 cells. MAF inhibited myocardial oxidative stress and proinflammatory cytokines in rats with coronary artery occlusion. The ST segment of MAF treatment groups also resumed. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that MAF could significantly reduce myocardial injury. In vitro data showed that MAF could improve hypoxia/reoxygenation- (H/R-) induced H9c2 cell activity. In addition, MAF could significantly reduce oxidative stress and inflammatory pathway protein expression in H/R-induced H9c2 cells. This study has clarified the protective effects of MAF on myocardial injury and also confirmed that oxidative stress and inflammation were involved in the myocardial ischemia-reperfusion injury (I/R) model.


Sign in / Sign up

Export Citation Format

Share Document