Characterization of rhesus macaque natural killer activity against a rhesus-derived target cell line at the single-cell level

2004 ◽  
Vol 231 (1-2) ◽  
pp. 85-95 ◽  
Author(s):  
Hanne Andersen ◽  
Jeffrey L. Rossio ◽  
Vicky Coalter ◽  
Barbara Poore ◽  
Maureen P. Martin ◽  
...  
1984 ◽  
Vol 88 (2) ◽  
pp. 382-392 ◽  
Author(s):  
Marc G. Golightly ◽  
Hlllel S. Koren ◽  
William W. Travis ◽  
C.Philip Brandt ◽  
Barton F. Haynes ◽  
...  

2019 ◽  
Author(s):  
Ruixin Wang ◽  
Dongni Wang ◽  
Dekai Kang ◽  
Xusen Guo ◽  
Chong Guo ◽  
...  

BACKGROUND In vitro human cell line models have been widely used for biomedical research to predict clinical response, identify novel mechanisms and drug response. However, one-fifth to one-third of cell lines have been cross-contaminated, which can seriously result in invalidated experimental results, unusable therapeutic products and waste of research funding. Cell line misidentification and cross-contamination may occur at any time, but authenticating cell lines is infrequent performed because the recommended genetic approaches are usually require extensive expertise and may take a few days. Conversely, the observation of live-cell morphology is a direct and real-time technique. OBJECTIVE The purpose of this study was to construct a novel computer vision technology based on deep convolutional neural networks (CNN) for “cell face” recognition. This was aimed to improve cell identification efficiency and reduce the occurrence of cell-line cross contamination. METHODS Unstained optical microscopy images of cell lines were obtained for model training (about 334 thousand patch images), and testing (about 153 thousand patch images). The AI system first trained to recognize the pure cell morphology. In order to find the most appropriate CNN model,we explored the key image features in cell morphology classification tasks using the classical CNN model-Alexnet. After that, a preferred fine-grained recognition model BCNN was used for the cell type identification (seven classifications). Next, we simulated the situation of cell cross-contamination and mixed the cells in pairs at different ratios. The detection of the cross-contamination was divided into two levels, whether the cells are mixed and what the contaminating cell is. The specificity, sensitivity, and accuracy of the model were tested separately by external validation. Finally, the segmentation model DialedNet was used to present the classification results at the single cell level. RESULTS The cell texture and density were the influencing factors that can be better recognized by the bilinear convolutional neural network (BCNN) comparing to AlexNet. The BCNN achieved 99.5% accuracy in identifying seven pure cell lines and 86.3% accuracy for detecting cross-contamination (mixing two of the seven cell lines). DilatedNet was applied to the semantic segment for analyzing in single-cell level and achieved an accuracy of 98.2%. CONCLUSIONS This study successfully demonstrated that cell lines can be morphologically identified using deep learning models. Only light-microscopy images and no reagents are required, enabling most labs to routinely perform cell identification tests.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 588 ◽  
Author(s):  
Lixing Liu ◽  
Beiyuan Fan ◽  
Diancan Wang ◽  
Xiufeng Li ◽  
Yeqing Song ◽  
...  

This paper presents a microfluidic instrument capable of quantifying single-cell specific intracellular proteins, which are composed of three functioning modules and two software platforms. Under the control of a LabVIEW platform, a pressure module flushed cells stained with fluorescent antibodies through a microfluidic module with fluorescent intensities quantified by a fluorescent module and translated into the numbers of specific intracellular proteins at the single-cell level using a MATLAB platform. Detection ranges and resolutions of the analyzer were characterized as 896.78–6.78 × 105 and 334.60 nM for Alexa 488, 314.60–2.11 × 105 and 153.98 nM for FITC, and 77.03–5.24 × 104 and 37.17 nM for FITC-labelled anti-beta-actin antibodies. As a demonstration, the numbers of single-cell beta-actins of two paired oral tumor cell types and two oral patient samples were quantified as: 1.12 ± 0.77 × 106/cell (salivary adenoid cystic carcinoma parental cell line (SACC-83), ncell = 13,689) vs. 0.90 ± 0.58 × 105/cell (salivary adenoid cystic carcinoma lung metastasis cell line (SACC-LM), ncell = 15,341); 0.89 ± 0.69 × 106/cell (oral carcinoma cell line (CAL 27), ncell = 7357) vs. 0.93 ± 0.69 × 106/cell (oral carcinoma lymphatic metastasis cell line (CAL 27-LN2), ncell = 6276); and 0.86 ± 0.52 × 106/cell (patient I) vs. 0.85 ± 0.58 × 106/cell (patient II). These results (1) validated the developed analyzer with a throughput of 10 cells/s and a processing capability of ~10,000 cells for each cell type, and (2) revealed that as an internal control in cell analysis, the expressions of beta-actins remained stable in oral tumors with different malignant levels.


Sign in / Sign up

Export Citation Format

Share Document