scholarly journals DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity

Cell Reports ◽  
2021 ◽  
Vol 36 (12) ◽  
pp. 109722
Author(s):  
Qian Du ◽  
Grady C. Smith ◽  
Phuc Loi Luu ◽  
James M. Ferguson ◽  
Nicola J. Armstrong ◽  
...  
2020 ◽  
Author(s):  
Qian Du ◽  
Grady C. Smith ◽  
Phuc Loi Luu ◽  
James M. Ferguson ◽  
Nicola J. Armstrong ◽  
...  

AbstractDNA replication timing and three-dimensional (3D) genome organisation occur across large domains associated with distinct epigenome patterns to functionally compartmentalise genome regulation. However, it is still unclear if alternations in the epigenome, in particular cancer-related DNA hypomethylation, can directly result in alterations to cancer higher order genome architecture. Here, we use Hi-C and single cell Repli-Seq, in the colorectal cancer DNMT1 and DNMT3B DNA methyltransferases double knockout model, to determine the impact of DNA hypomethylation on replication timing and 3D genome organisation. First, we find that the hypomethylated cells show a striking loss of replication timing precision with gain of cell-to-cell replication timing heterogeneity and loss of 3D genome compartmentalisation. Second, hypomethylated regions that undergo a large change in replication timing also show loss of allelic replication timing, including at cancer-related genes. Finally, we observe the formation of broad ectopic H3K4me3-H3K9me3 domains across hypomethylated regions where late replication is maintained, that potentially prevent aberrant transcription and loss of genome organisation after DNA demethylation. Together, our results highlight a previously underappreciated role for DNA methylation in maintenance of 3D genome architecture.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 196 ◽  
Author(s):  
Phoebe Oldach ◽  
Conrad A. Nieduszynski

3D genome organization is strongly predictive of DNA replication timing in mammalian cells. This work tested the extent to which loop-based genome architecture acts as a regulatory unit of replication timing by using an auxin-inducible system for acute cohesin ablation. Cohesin ablation in a population of cells in asynchronous culture was shown not to disrupt patterns of replication timing as assayed by replication sequencing (RepliSeq) or BrdU-focus microscopy. Furthermore, cohesin ablation prior to S phase entry in synchronized cells was similarly shown to not impact replication timing patterns. These results suggest that cohesin-mediated genome architecture is not required for the execution of replication timing patterns in S phase, nor for the establishment of replication timing domains in G1.


2019 ◽  
Author(s):  
Phoebe Oldach ◽  
Conrad A Nieduszynski

3D genome organization is strongly predictive of DNA replication timing in mammalian cells. This work tested the extent to which loop-based genome architecture acts as a regulatory unit of replication timing by using an auxin-inducible system for acute cohesin ablation. Cohesin ablation in a population of cells in asynchronous culture was shown not to disrupt patterns of replication timing as assayed by replication sequencing (RepliSeq) or BrdU-focus microscopy. Furthermore, cohesin ablation prior to S phase entry in synchronized cells was similarly shown to not impact replication timing patterns. These results suggest that cohesin-mediated genome architecture is not required for the execution of replication timing patterns in S phase, nor for the establishment of replication timing domains in G1.


2019 ◽  
Vol 20 (12) ◽  
pp. 721-737 ◽  
Author(s):  
Claire Marchal ◽  
Jiao Sima ◽  
David M. Gilbert

Blood ◽  
2013 ◽  
Vol 121 (17) ◽  
pp. 3531-3540 ◽  
Author(s):  
Apurva V. Shirodkar ◽  
Rosanne St. Bernard ◽  
Anna Gavryushova ◽  
Anna Kop ◽  
Britta J. Knight ◽  
...  

Key Points Promoter DNA methylation, an epigenetic process, is functionally relevant for regulating the expression of endothelial cell–enriched genes.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 221 ◽  
Author(s):  
Ichiro Hiratani ◽  
Saori Takahashi

In mammalian cells, DNA replication timing is controlled at the level of megabase (Mb)-sized chromosomal domains and correlates well with transcription, chromatin structure, and three-dimensional (3D) genome organization. Because of these properties, DNA replication timing is an excellent entry point to explore genome regulation at various levels and a variety of studies have been carried out over the years. However, DNA replication timing studies traditionally required at least tens of thousands of cells, and it was unclear whether the replication domains detected by cell population analyses were preserved at the single-cell level. Recently, single-cell DNA replication profiling methods became available, which revealed that the Mb-sized replication domains detected by cell population analyses were actually well preserved in individual cells. In this article, we provide a brief overview of our current knowledge on DNA replication timing regulation in mammals based on cell population studies, outline the findings from single-cell DNA replication profiling, and discuss future directions and challenges.


Author(s):  
Amnon Koren ◽  
Dashiell J Massey ◽  
Alexa N Bracci

Abstract Motivation Genomic DNA replicates according to a reproducible spatiotemporal program, with some loci replicating early in S phase while others replicate late. Despite being a central cellular process, DNA replication timing studies have been limited in scale due to technical challenges. Results We present TIGER (Timing Inferred from Genome Replication), a computational approach for extracting DNA replication timing information from whole genome sequence data obtained from proliferating cell samples. The presence of replicating cells in a biological specimen leads to non-uniform representation of genomic DNA that depends on the timing of replication of different genomic loci. Replication dynamics can hence be observed in genome sequence data by analyzing DNA copy number along chromosomes while accounting for other sources of sequence coverage variation. TIGER is applicable to any species with a contiguous genome assembly and rivals the quality of experimental measurements of DNA replication timing. It provides a straightforward approach for measuring replication timing and can readily be applied at scale. Availability and Implementation TIGER is available at https://github.com/TheKorenLab/TIGER. Supplementary information Supplementary data are available at Bioinformatics online


Sign in / Sign up

Export Citation Format

Share Document